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Overview

I Several applications in optimization, image and signal processing deal with data
belonging to the Stiefel manifold

St(n, p) = {X ∈ Rn×p : X>X = Ip}.
I Some applications require evaluating the geodesic distance between two arbitrary

points on St(n, p). No closed-form solution is known for St(n, p).
I A new computational framework for computing the geodesic distance is proposed,

based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
I Two example applications:
. Karcher mean on the space of probability density functions (PDFs);
. Interpolation of data belonging to St(n, p) for parametric model reduction.

Geodesics on St(n, p)

I Geodesic: generalization of straight lines to manifolds.
I When the tangent space TXSt(n, p) is endowed with the canonical metric

gc(∆,∆) = tr(∆>(I − 1

2
XX>)∆), ∆ ∈ TXSt(n, p),

one can get the following ODE for the geodesic Z ≡ Z (t) [1, eq. (2.41)]:
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I Closed-form solution for a geodesic Z (t) that realizes a tangent vector ∆ with base
point X (Ross Lippert [1, eq. (2.42)]):
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Riemannian logarithm on St(n, p)

I Given X , Y ∈ St(n, p), the geodesic
distance d(X ,Y ) is the length of ∆∗ ≡v
Z (0) ∈ TXSt(n, p) s.t. the Riemannian ex-
ponential mapping ExpX (∆∗) = Y .

I Equivalent to: Find the Riemannian log-
arithm of Y with base point X , i.e.,
LogX (Y ) = ∆∗.
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Problem statement: Find ∆∗ ≡
v
Z (0) ∈ TXSt(n, p) that satisfies the BVP
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Z ), with BCs

{
Z (0) = X ,

Z (1) = Y .

I No closed-form solution to this problem is known for St(n, p)!

Single shooting method

I Define F (∆) = Z(t=1,∆) − Y . Find ∆∗ s.t. F (∆∗) = 0 with Newton’s method.
I All information is contained in a smaller problem on St(2p, p) −→ complexity re-

duces from O(n3) to O(p3) [1].
I A closed-form expression for the Fréchet derivative of the matrix exponential KA

exp(A)

[2, eq. (10.17b)] allows for explicit expressions of the Jacobians

KA
exp(A) =

(
exp(A>/2)⊗ exp(A/2)

)
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)
.

I Fast convergence, but a very good initial guess ∆(0) is needed.

Leapfrog algorithm (by L. Noakes [3])

I Based on subdivision, s.t. single shooting works well on each subinterval.
I Illustration of two iterations of the procedure, for m points:
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I Global convergence to ∆∗, but very slow. Deteriorates when m→∞ .

Multiple shooting method

I Enforce continuity conditions of Z and
v
Z at

the interfaces between subintervals.
I Fast convergence to ∆∗.

I Σ
(k)
1 : point on St(n, p) relative to the k-th

subinterval.
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Figure: Multiple shooting on St(n, p).

System of nonlinear equations:

F (Σ) :=
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= 0,

linearize−−−−→

For each subinterval k , we have an explicit

expression for the Jacobian G (k).
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δΣ = 0.

Our Stiefel Log algorithm: shooting and leapfrog

I To compute the Riemannian
logarithm on St(n, p), single
shooting, leapfrog and multiple
shooting are combined as illus-
trated by the flowchart below.
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Figure: Flowchart of the Stiefel Log
algorithm.

I We observe that F (Σ0) → 0 as the number of
iterations in the leapfrog algorithm increases.

I Leapfrog is used to initialize multiple shoot-
ing, to enforce the Newton-Kantorovich condi-
tion ‖DF (Σ0)−1F (Σ0)‖ ≤ α.
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I Second N.-K. condition (work in progress):
‖DF (Σ0)−1 (DF (ξ)− DF (ζ))‖ ≤ ω̄‖ξ − ζ‖.

Karcher mean of univariate probability density functions

I Karcher mean: one possible notion of mean on a Riemannian manifoldM, defined
by the optimization problem µ = arg minp∈M

1
2N

∑N
i=1 d(p, qi)

2, where d(p, qi) is
the distance between two points on M.

I Sn = {x ∈ Rn+1 : ‖x‖ = 1} can be used
to approximate S∞, which represents the
space of univariate PDFs on the unit in-
terval [0, 1], i.e., P = {g : [0, 1] → R≥0 :∫ 1

0 g(x) dx = 1}.
I Example: Karcher mean of 3 PDFs, sam-

pled at 100 points, which makes them be-
longing to St(100, 1). 0 0.5 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

P
D
F
s

0 0.5 1

x

0

0.05

0.1

0.15

0.2

0.25

0.3

Karcher mean

Model reduction with POD and interpolation on St(n, r)

I Model reduction for dynamical systems parametrized with p = [p1, . . . , pd ]>:{ v
x(t;p) = A(p) x(t;p) + B(p)u(t),

y(t;p) = C(p) x(t;p),

x(t;p) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rq,

A(p) ∈ Rn×n, B(p) ∈ Rn×m, C(p) ∈ Rq×n.

reduction−−−−−→

{ v
xr(t;p) = Ar(p) xr(t;p) + Br(p)u(t),

yr(t;p) = Cr(p) xr(t;p),

xr = V>x, Ar = V>AV, Br = V>B,

Cr = CV, V ≡ V(p) ∈ St(n, r).

I For each parameter in a set of parameter values {p1,p2, . . . ,pK}, use proper or-
thogonal decomposition (POD) to derive a reduced-order basis Vi ∈ St(n, r).
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Figure: Interpolation on St(n, r).

I This yields a set of local basis ma-
trices {V1,V2, . . . ,VK}.

I Given a new parameter value p̂, a
basis V̂ can be obtained by inter-
polating the local basis ma-
trices on a tangent space to
St(n, r).
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I Application: transient heat equation on a square domain, with 4 disjoint discs.
I FEM discretization with n = 1169. Simulation for t ∈ [0, 500], with ∆t = 0.1.
I 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.
I Relative error between y(·; p̂) and yr(·; p̂) is about 1%.
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