UNIVERSITÉ
 DE GENĖVE

Multiple shooting for Stiefel geodesics

Marco Sutti and Bart Vandereycken

Section of Mathematics, University of Geneva

Overview

Several applications in optimization, image and signal processing deal with data belonging to the Stiefel manifold

$$
\operatorname{St}(n, p)=\left\{X \in \mathbb{R}^{n \times p}: X^{\top} X=I_{p}\right\} .
$$

- Some applications require evaluating the geodesic distance between two arbitrary points on St (n, p). No closed-form solution is known for St (n, p).
- A new computational framework for computing the geodesic distance is proposed based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
Two example applications:
Karcher mean on the space of probability density functions (PDFs);
Interpolation of data belonging to $S t(n, p)$ for parametric model reduction.

Geodesics on St(n,p)

- Geodesic: generalization of straight lines to manifolds.

When the tangent space $T_{\chi} \operatorname{St}(n, p)$ is endowed with the canonical metric

$$
g_{c}(\Delta, \Delta)=\operatorname{tr}\left(\Delta^{\top}\left(I-\frac{1}{2} X X^{\top}\right) \Delta\right), \quad \Delta \in T_{X} \operatorname{St}(n, p),
$$

one can get the following ODE for the geodesic $Z \equiv Z(t)[1$, eq. (2.41)]:

$$
\ddot{Z}+\dot{Z}^{\top} Z+Z\left(\left(Z^{\top} \dot{Z}\right)^{2}+\dot{Z}^{\top} \dot{Z}\right)=0
$$

- Closed-form solution for a geodesic $Z(t)$ that realizes a tangent vector Δ with base point X (Ross Lippert [1, eq. (2.42)])

$$
Z(t)=\left[\begin{array}{ll}
X & X_{\perp}
\end{array}\right] \exp \left(\left[\begin{array}{lc}
X^{\top} \Delta & -\left(X_{\perp}^{\top} \Delta\right)^{\top} \\
X_{\perp}^{\top} \Delta & O
\end{array}\right] t\right)\left[\begin{array}{l}
I_{p} \\
O
\end{array}\right]
$$

Riemannian logarithm on $\operatorname{St}(n, p)$

- Given $X, Y \in \operatorname{St}(n, p)$, the geodesic distance $d(X, Y)$ is the length of $\Delta_{*} \equiv$ $Z(0) \in T_{X} S t(n, p)$ s.t. the Riemannian exponential mapping $\operatorname{Exp}_{x}\left(\Delta_{*}\right)=Y$
Equivalent to: Find the Riemannian logarithm of Y with base point X, i.e.
\rightarrow $\log _{X}(Y)=\Delta_{*}$

Problem statement: Find $\Delta_{*} \equiv \dot{Z}(0) \in T_{X} \operatorname{St}(n, p)$ that satisfies the BVP

$$
\ddot{Z}=-\dot{Z} \dot{Z}^{\top} Z-Z\left(\left(Z^{\top} \dot{Z}\right)^{2}+\dot{Z}^{\top} \dot{Z}\right), \quad \text { with BCs }\left\{\begin{array}{l}
Z(0)=X, \\
Z(1)=Y,
\end{array}\right.
$$

- No closed-form solution to this problem is known for $\operatorname{St}(n, p)$!

Single shooting method

- Define $F(\Delta)=Z_{(t=1, \Delta)}-Y$. Find Δ_{*} s.t. $F\left(\Delta_{*}\right)=0$ with Newton's method
- All information is contained in a smaller problem on $\operatorname{St}(2 p, p) \longrightarrow$ complexity re duces from $O\left(n^{3}\right)$ to $O\left(p^{3}\right)$ [1].
- A closed-form expression for the Fréchet derivative of the matrix exponential $K_{\text {exp }}^{A}(A)$ [2, eq. (10.17b)] allows for explicit expressions of the Jacobian

$$
K_{\exp (A)}^{A}=\left(\exp \left(A^{\top} / 2\right) \otimes \exp (A / 2)\right) \operatorname{sinch}\left(\frac{1}{2}\left[A^{\top} \oplus(-A)\right]\right)
$$

- Fast convergence, but a very good initial guess $\Delta^{(0)}$ is needed.

Leapfrog algorithm (by L. Noakes [3])
Based on subdivision, s.t. single shooting works well on each subinterval Illustration of two iterations of the procedure, for m points:

Global convergence to Δ_{*}, but very slow. Deteriorates when $m \rightarrow \infty$
Multiple shooting method
Enforce continuity conditions of Z and \dot{Z} at the interfaces between subintervals.
Fast convergence to Δ

- $\Sigma_{1}^{(k)}$: point on $\operatorname{St}(n, p)$ relative to the k-th subinterval.
- $\Sigma_{2}^{(k)}$: tangent vector to $\operatorname{St}(n, p)$ at $\Sigma_{1}^{(k)}$

Figure: Multiple shooting on $\mathrm{St}(n, p)$.
System of nonlinear equations: For each subinterval k, we have an explicit

of nonlinear equations:	For each subinterval k, we have an explicit
$\left[\begin{array}{c}Z_{1}^{(1)}-\Sigma_{1}^{(2)} \\ Z_{2}^{(1)}-\Sigma_{2}^{(2)} \\ Z_{1}^{(2)}-\Sigma_{1}^{(3)} \\ Z_{2}^{(2)}-\Sigma_{2}^{(3)} \\ \vdots \\ r_{1}:=\Sigma_{1}^{(1)}-Y_{0} \\ r_{2}:=\Sigma_{1}^{(m)}-Y_{1}\end{array}\right]=0, \xrightarrow{\text { linearize }} F(\Sigma)+$	$\underbrace{\left[\begin{array}{ccccc}G^{(1)} & -1 & 0 & & 0 \\ 0 & G^{(2)} & -1 & \ldots & \\ & \cdots & \cdots & \cdots & 0 \\ 0 & & \cdots & G(m-1) & -1 \\ C & 0 & & 0 & D\end{array}\right]}_{=: D F(\Sigma)} \delta \delta \Sigma=0$.

Our Stiefel Log algorithm: shooting and leapfrog

- To compute the Riemannian logarithm on $\operatorname{St}(n, p)$, single shooting, leapfrog and multiple shooting are combined as illus trated by the flowchart below.

Figure: Flo
algorithm

We observe that $F\left(\Sigma_{0}\right) \rightarrow 0$ as the number of iterations in the leapfrog algorithm increases. Leapfrog is used to initialize multiple shooting, to enforce the Newton-Kantorovich condition $\left\|D F\left(\Sigma_{0}\right)^{-1} F\left(\Sigma_{0}\right)\right\| \leq \alpha$.

- Second N.-K. condition (work in progress) $\left\|D F\left(\Sigma_{0}\right)^{-1}(D F(\xi)-D F(\zeta))\right\| \leq \bar{\omega}\|\xi-\zeta\|$

Karcher mean of univariate probability density functions

- Karcher mean: one possible notion of mean on a Riemannian manifold \mathcal{M}, defined by the optimization problem $\mu=\arg \min _{p \in \mathcal{M}} \frac{1}{2 N} \sum_{i=1}^{N} d\left(p, q_{i}\right)^{2}$, where $d\left(p, q_{i}\right)$ is the distance between two points on \mathcal{M}.
- $\mathcal{S}^{n}=\left\{x \in \mathbb{R}^{n+1}:\|x\|=1\right\}$ can be used to approximate \mathcal{S}^{∞}, which represents th space of univariate PDFs on the unit in terval $[0,1]$, i.e., $\mathcal{P}=\left\{g:[0,1] \rightarrow \mathbb{R}_{\geq 0}\right.$ $\left.\int_{0}^{1} g(x) \mathrm{d} x=1\right\}$
- Example: Karcher mean of 3 PDFs, sam pled at 100 points, which makes them be longing to $\operatorname{St}(100,1)$

Model reduction with POD and interpolation on $\mathrm{St}(n, r)$

- Model reduction for dynamical systems parametrized with $\mathbf{p}=\left[p_{1}, \ldots, p_{d}\right]^{\top}$

$\begin{array}{lll}\mathbf{x}(t ; \mathbf{p}) \in \mathbb{R}^{n}, & \mathbf{u}(t) \in \mathbb{R}^{m}, \quad \mathbf{y}(t) \in \mathbb{R}^{q}, & \mathbf{x}_{r}=\mathbf{V}^{\top} \mathbf{x}, \\ \mathbf{A}(\mathbf{p}) \in \mathbb{R}_{r}^{n \times n}, & \mathbf{B}(\mathbf{p}) \in \mathbb{R}^{\top} \mathbf{A V}, \quad \mathbf{B}_{r}=\mathbf{V}^{\top} \mathbf{B}, & \mathbf{C}(\mathbf{p}) \in \mathbb{R}^{q \times n} .\end{array} \quad \mathbf{C}_{r}=\mathbf{C V}, \quad \mathbf{V} \equiv \mathbf{V}(\mathbf{p}) \in \operatorname{St}(n, r)$.
- For each parameter in a set of parameter values $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{K}\right\}$, use proper orthogonal decomposition (POD) to derive a reduced-order basis $\mathbf{V}_{i} \in \operatorname{St}(n, r)$

This yields a set of local basis ma trices $\left\{\mathbf{V}_{1}, \mathbf{V}_{2}, \ldots, \mathbf{V}_{K}\right\}$

- Given a new parameter value $\hat{\mathbf{p}}$, a basis $\hat{\mathbf{V}}$ can be obtained by interpolating the local basis matrices on a tangent space to St (n, r).
Relative error of the reduced model

- Application: transient heat equation on a square domain, with 4 disjoint discs.
- FEM discretization with $n=1169$. Simulation for $t \in[0,500]$, with $\Delta t=0.1$.
- 500 snapshot POD over 5000 timeframes, with a reduced model of size $r=4$
- Relative error between $\mathbf{y}(\cdot ; \hat{\mathbf{p}})$ and $\mathbf{y}_{r}(\cdot ; \hat{\mathbf{p}})$ is about 1%

Essential references

[1] Alan Edelman, Toms A. Arias, and Steven T. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303-353, 1998.
[2] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA, 2008.
[3] Lyle Noakes. A global algorithm for geodesics. Journal of the Australian Mathematical Society. Series
A. Pure Mathematics and Statistics, 65(1):37-50, 0081998.

