UNIVERSITÉ DE GENÈVE

Overview

Several applications in optimization, image and signal processing deal with data belonging to the **Stiefel manifold**

 $\operatorname{St}(n,p) = \{ X \in \mathbb{R}^{n \times p} : X^{\top} X = I_p \}.$

- Some applications require evaluating the geodesic distance between two arbitrary points on St(n, p). No closed-form solution is known for St(n, p).
- A new computational framework for computing the geodesic distance is proposed, based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
- **Two example applications**:
- Karcher mean on the space of probability density functions (PDFs); \triangleright Interpolation of data belonging to St(n, p) for parametric model reduction.

Geodesics on St(n, p)

- **Geodesic**: generalization of straight lines to manifolds.
- ▶ When the tangent space $T_X St(n, p)$ is endowed with the canonical metric

$$g_c(\Delta, \Delta) = \operatorname{tr}(\Delta^{\top}(I - \frac{1}{2}XX^{\top})\Delta), \quad \Delta \in T_X \operatorname{St}(n, p)$$

one can get the following ODE for the geodesic $Z \equiv Z(t)$ [1, eq. (2.41)]: $\vec{Z} + \vec{Z}\vec{Z}^{\top}Z + Z((\vec{Z}^{\top}\vec{Z})^2 + \vec{Z}^{\top}\vec{Z}) = 0.$

 \blacktriangleright Closed-form solution for a geodesic Z(t) that realizes a tangent vector Δ with base point X (Ross Lippert [1, eq. (2.42)]):

$$Z(t) = \begin{bmatrix} X \ X_{\perp} \end{bmatrix} \exp\left(\begin{bmatrix} X^{\top} \Delta & -(X_{\perp}^{\top} \Delta)^{\top} \\ X_{\perp}^{\top} \Delta & O \end{bmatrix} t \right) \begin{bmatrix} I_{p} \\ O \end{bmatrix}$$

 $T_X \operatorname{St}(n,p)$

Riemannian logarithm on St(n, p)

- \blacktriangleright Given X, Y \in St(n, p), the geodesic **distance** d(X, Y) is the length of $\Delta_* \equiv$ $Z(0) \in T_X St(n, p)$ s.t. the Riemannian exponential mapping $\operatorname{Exp}_X(\Delta_*) = Y$.
- Equivalent to: Find the Riemannian log**arithm** of Y with base point X, i.e., $\operatorname{Log}_X(Y) = \Delta_*.$

Problem statement: Find $\Delta_* \equiv Z(0) \in T_X St(n, p)$ that satisfies the BVP $\ddot{Z} = -\ddot{Z}\ddot{Z}^{ op}Z - Z((Z^{ op}\ddot{Z})^2 + \ddot{Z}^{ op}Z), \quad \text{with BCs} \begin{cases} Z(0) = X, \\ Z(1) = Y. \end{cases}$

 \blacktriangleright No closed-form solution to this problem is known for St(n, p)!

Single shooting method

- ► Define $F(\Delta) = Z_{(t=1,\Delta)} Y$. Find Δ_* s.t. $F(\Delta_*) = 0$ with **Newton's method**.
- \blacktriangleright All information is contained in a smaller problem on $St(2p, p) \longrightarrow$ complexity reduces from $O(n^3)$ to $O(p^3)$ [1].
- > A closed-form expression for the Fréchet derivative of the matrix exponential $K_{exp(A)}^{A}$ [2, eq. (10.17b)] allows for **explicit expressions of the Jacobians**

$$\mathcal{K}^{\mathcal{A}}_{\exp(\mathcal{A})} = \left(\exp(\mathcal{A}^{ op}/2) \otimes \exp(\mathcal{A}/2)
ight) ext{sinch} \left(rac{1}{2}[\mathcal{A}^{ op} \oplus (\mathcal{A})] + 2\mathbb{E}_{2}[\mathcal{A}^{ op}] + 2\mathbb{E}_{2}[\mathcal{A}^{$$

 \blacktriangleright Fast convergence, but a very good initial guess $\Delta^{(0)}$ is needed.

Marco Sutti and Bart Vandereycken

Section of Mathematics, University of Geneva

- Figure: Multiple shooting on St(n, p).
- For each subinterval k, we have an **explicit expression** for the Jacobian $G^{(k)}$.

 \blacktriangleright We observe that $F(\Sigma_0) \rightarrow 0$ as the number of iterations in the leapfrog algorithm increases. Leapfrog is used to initialize multiple shooting, to enforce the Newton-Kantorovich condition $\|DF(\Sigma_0)^{-1}F(\Sigma_0)\| \leq \alpha$.

Karcher mean of univariate probability density functions

- the distance between two points on \mathcal{M} .
- $\triangleright S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ can be used to approximate \mathcal{S}^{∞} , which represents the space of univariate PDFs on the unit interval [0,1], i.e., $\mathcal{P} = \{g : [0,1]
 ightarrow \mathbb{R}_{\geq 0} : \square$ $\int_0^1 g(x) \, \mathrm{d}x = 1 \}.$
- **Example**: Karcher mean of 3 PDFs, sampled at 100 points, which makes them belonging to St(100, 1).

Model reduction with POD and interpolation on St(n, r)

$$\begin{cases} \mathbf{\dot{x}}(t;\mathbf{p}) = \mathbf{A}(\mathbf{p}) \mathbf{x}(t;\mathbf{p}) + \mathbf{B}(\mathbf{p}) \mathbf{u}(t), \\ \mathbf{y}(t;\mathbf{p}) = \mathbf{C}(\mathbf{p}) \mathbf{x}(t;\mathbf{p}), \\ \mathbf{x}(t;\mathbf{p}) \in \mathbb{R}^{n} \quad \mathbf{u}(t) \in \mathbb{R}^{m} \quad \mathbf{y}(t) \in \mathbb{R}^{m} \end{cases}$$

 $\mathbf{u}(t) \in \mathbb{R}^{n}, \quad \mathbf{y}(t) \in \mathbb{R}$ $\mathbf{A}(\mathbf{p}) \in \mathbb{R}^{n \times n}, \quad \mathbf{B}(\mathbf{p}) \in \mathbb{R}^{n \times m}, \quad \mathbf{C}(\mathbf{p}) \in \mathbb{R}^{n \times m}$

Essential references

- Applied Mathematics, Philadelphia, PA, USA, 2008.
- A. Pure Mathematics and Statistics, 65(1):37–50, 008 1998.

Karcher mean: one possible notion of mean on a Riemannian manifold \mathcal{M} , defined by the optimization problem $\mu = \arg \min_{p \in M} \frac{1}{2N} \sum_{i=1}^{N} d(p, q_i)^2$, where $d(p, q_i)$ is

 \blacktriangleright Model reduction for dynamical systems parametrized with $\mathbf{p} = [p_1, \ldots, p_d]^\top$:

	reduction
q,	
$\in \mathbb{R}^{q imes n}.$	

 $\int \mathbf{x}_r(t;\mathbf{p}) = \mathbf{A}_r(\mathbf{p}) \mathbf{x}_r(t;\mathbf{p}) + \mathbf{B}_r(\mathbf{p}) \mathbf{u}(t),$ $\mathbf{y}_r(t;\mathbf{p}) = \mathbf{C}_r(\mathbf{p}) \mathbf{x}_r(t;\mathbf{p}),$ $\mathbf{x}_r = \mathbf{V}^{\top} \mathbf{x}, \quad \mathbf{A}_r = \mathbf{V}^{\top} \mathbf{A} \mathbf{V}, \quad \mathbf{B}_r = \mathbf{V}^{\top} \mathbf{B},$ $C_r = CV$, $V \equiv V(p) \in St(n, r)$.

For each parameter in a set of parameter values $\{\mathbf{p}_1, \mathbf{p}_2, \ldots, \mathbf{p}_K\}$, use proper orthogonal decomposition (POD) to derive a reduced-order basis $V_i \in St(n, r)$.

[1] Alan Edelman, Toms A. Arias, and Steven T. Smith. The geometry of algorithms with orthogonality constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998. [2] Nicholas J. Higham. Functions of Matrices: Theory and Computation. Society for Industrial and [3] Lyle Noakes. A global algorithm for geodesics. Journal of the Australian Mathematical Society. Series