

Connecting geodesics for the Stiefel manifold Marco Sutti and Bart Vandereycken

Section of Mathematics, University of Geneva

Overview

I Several applications in optimization, image and signal processing deal with data belonging to the Stiefel manifold

 $\mathrm{St}(n, p) = \{ X \in \mathbb{R}^{n \times p} : X^\top X = I_p \}.$

- I Some applications require evaluating the geodesic distance between two arbitrary points on $St(n, p)$. No closed-form solution is known for $St(n, p)$.
- A new computational framework for computing the geodesic distance is proposed, based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
- **In Two example applications:**
- \triangleright Karcher mean on the space of probability density functions (PDFs);
- \triangleright Interpolation of data belonging to $St(n, p)$ for parametric model reduction.

 $Z(t) = [X \ X_\perp] \ \text{exp} \bigg(\begin{bmatrix} X^\top \Delta & -(X_\perp^\top \Delta)^\top \ X^\top \Delta & 0 \end{bmatrix}$ X^{\perp}_{\perp} ∆ O 1 t \bigwedge \bigwedge O 1 .

 $Tr{\rm St}(n,p)$

min $X \in \mathcal{X}$ $F(X_1,\ldots,X_s)$

while fixing the other blocks at their last updated values. \triangleright Let X_i^k ζ_i^k denote the value of X_i after its k th update, and let F_i^k $\mathcal{F}_i^k(X_i) = \mathcal{F}(X_1^k)$ $\chi_1^{\prime k},\ldots,X_{j-1}^{\prime k}$ $i-1$ $X_i, X_{i+1}^{k-1}, \ldots, X_{s}^{k-1}$ $\binom{k-1}{s}, \quad \forall i, \forall k.$ \triangleright At each step, the update is [\[3,](#page-0-2) Eq. $(1.3a)$] $X_i^k = \argmin \mathit{F}_i^k$ $X_i \in \mathcal{X}_i^k$ $i^{k}(X_{i}).$

- \blacktriangleright Model reduction for dynamical systems parametrized with $\boldsymbol{p} = [\rho_1, \ldots, \rho_d]^\top$:
- $\int x(t; p) = A(p) x(t; p) + B(p) u(t),$ $\mathbf{y}(t; \boldsymbol{p}) = \boldsymbol{C}(\boldsymbol{p})\,\mathbf{x}(t; \boldsymbol{p}), \qquad \qquad \qquad \qquad \text{reduction} \quad \big(\,\mathbf{y}_{\mathsf{r}}(t; \boldsymbol{p}) = \boldsymbol{C}_{\mathsf{r}}(\boldsymbol{p})\,\mathbf{x}_{\mathsf{r}}(t; \boldsymbol{p}),$ $\mathsf{x}(t; \boldsymbol{\rho}) \in \mathbb{R}^n$, $\boldsymbol{\mu}(t) \in \mathbb{R}^m$, $\mathsf{y}(t) \in \mathbb{R}^q$, $A(p) \in \mathbb{R}^{n \times n}$, $B(p) \in \mathbb{R}^{n \times m}$, $C(p) \in \mathbb{R}^{q \times n}$. $C_r = CV$, $V \equiv V(p) \in \text{St}(n, r)$. −−−−−→ $\int \stackrel{\bullet}{X}_r(t;p) = A_r(p) x_r(t;p) + B_r(p) u(t),$ $x_r = V^{\dagger} x$, $A_r = V^{\dagger} A V$, $B_r = V^{\dagger} B$,
- For each parameter in a set of parameter values $\{p_1, p_2, \ldots, p_K\}$, use proper orthogonal decomposition (POD) to derive a reduced-order basis $V_i \in \text{St}(n, r)$.

ξ

Y.

 $\cdot Z(t)$

 \overline{X}

 $\mathrm{St}(n,p)$

 $\mathrm{St}(n,p)$

 $\mathcal{P}_\mathrm{St}(Z)$

 $X \bullet$

 $d(X, \mathcal{P}_{\mathrm{St}}(Z))$

 \triangleright Proof of convergence based on showing local strong convexity of $d^2_{\text{ext}}(X_i^k)$ $i-1$ $, X_i$. \triangleright Connection to the Karcher mean of two points X_{i-1}^k $i-1$ and X_{i-1}^{k-1} $i-1$.

Geodesics via leapfrog (by L. Noakes [\[2\]](#page-0-1))

- **I** Based on subdivision, s.t. single shooting works well on each subinterval.
- I Illustration of two iterations of the procedure, for m points:

 \blacktriangleright Global convergence to Δ_* , but very slow. Deteriorates when $m \to \infty$.

Karcher mean: one possible notion of mean on a Riemannian manifold M, defined by the optimization problem

where $d(p, q_i)$ is the distance between two points on M.

- $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ can be used to approximate S^∞ , which represents the space of univariate PDFs on the unit interval $[0, 1]$, i.e., $\mathcal{P} = \{g : [0, 1] \rightarrow \emptyset\}$ $\mathbb{R}_{\geq 0} : \int_0^1$ $\int_0^1 g(x) dx = 1$.
- **Example**: Karcher mean of 3 PDFs, sampled at 100 points, which makes them belonging to $St(100, 1)$.

Model reduction with POD and interpolation on $St(n, r)$

Geodesics via nonlinear block Gauss–Seidel [\[3\]](#page-0-2)

Alternating minimization: cyclically minimize F over each block variable X_i

Z

Riemannian logarithm on $St(n, p)$

- **I** Given X , Y ∈ St (n, p) , the geodesic distance $d(X, Y)$ is the length of $\Delta_* \equiv$ $Z(0) \in T_X \text{St}(n, p)$ s.t. the Riemannian exponential mapping $\mathrm{Exp}_X(\Delta_*) = Y$.
- Equivalent to: Find the Riemannian logarithm of Y with base point X , i.e., $\text{Log}_X(Y) = \Delta_*$.
- \blacktriangleright No closed-form solution to this problem is known for $St(n, p)!$

Geodesics via multiple shooting

- \blacktriangleright Enforce continuity conditions of Z and \mathbf{Z} Z at the interfaces between subintervals.
- \blacktriangleright Fast convergence to Δ_{*} .
- \sum_{1}^{k} $1^{(k)}$: point on $St(n, p)$ relative to the kth subinterval.
- \blacktriangleright $\sum_{2}^{(k)}$ $\mathcal{L}_2^{(k)}$: tangent vector to $\mathrm{St}(n, p)$ at Σ (k) $\frac{(\kappa)}{1}$.

For each subinterval k , we have an explicit **expression** for the Jacobian $G^{(k)}$.

 $\sqrt{ }$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{1}$ $\overline{}$ $G^{(1)} - I$ O O $O G^{(2)} - I \quad \cdots$ O O $\cdots G^{(m-1)}-1$ 1 $\mathbf{1}$ I I I $\mathbf{1}$ $\delta \Sigma = 0.$

Geodesics on St(n, p)

- **In Geodesic**: generalization of straight lines to manifolds.
- **I** When the tangent space $T_X St(n, p)$ is endowed with the canonical metric

 $g_c(\Delta,\Delta)=\text{tr}(\Delta^\top(I-\Delta))$ 1 2 XX^{\top}) Δ), $\Delta \in T_X\mathrm{St}(n, p)$, one can get the following ODE for the geodesic $Z \equiv Z(t)$ [\[1,](#page-0-0) eq. (2.41)]: \bullet $Z +$ \blacksquare Z \blacksquare $\overline{Z}^{\top}Z + Z((Z^{\top}$ \blacksquare $(\mathbf{Z})^2 + \mathbf{Z}$ Z $\frac{1}{7}$ Z) = 0.

 \blacktriangleright Closed-form solution for a geodesic $Z(t)$ that realizes a tangent vector Δ with base point X (Ross Lippert [\[1,](#page-0-0) eq. (2.42)]):

System of nonlinear equations:

 $\overline{1}$ $\overline{1}$ $\overline{}$

linearize

 $F(\Sigma)+$

−−−−→

• Complexity of multiple shooting with condensing is $O(mn^3p^3)$.

 $= 0,$

Karcher mean of univariate probability density functions

$$
\mu = \argmin_{p \in \mathcal{M}} \frac{1}{2N} \sum_{i=1}^N d(p, q_i)^2,
$$

- **In This yields a set of local basis ma**trices $\{ {\boldsymbol{V}}_1,\,{\boldsymbol{V}}_2,\ldots,\,{\boldsymbol{V}}_K \}$.
- \blacktriangleright Given a new parameter value \hat{p} , a basis \hat{V} can be obtained by interpolating the local basis matrices on a tangent space to $St(n, r)$.

Application: transient heat equation on a square domain, with 4 disjoint discs. **I** FEM discretization with $n = 1169$. Simulation for $t \in [0, 500]$, with $\Delta t = 0.1$. \blacktriangleright 500 snapshot POD over 5000 timeframes, with a reduced model of size $r = 4$.

Relative error between $y(\cdot; \hat{\boldsymbol{\rho}})$ and $y_r(\cdot; \hat{\boldsymbol{\rho}})$ is about 1% .

INON ALGO ARE: Nonlinear block Gauss–Seidel or block coordinate descent method [\[3\]](#page-0-2).

 \triangleright Theory in [\[3\]](#page-0-2) applies only in Euclidean space \mathbb{R}^n , not on Riemannian manifolds. \triangleright Smooth extension of Riemannian distance function $d: \operatorname{St}(n, p) \times \operatorname{St}(n, p) \to \mathbb{R}_{\geq 0}$ as d_{ext}^2 : St $(n, p) \times \mathbb{R}^{n \times p} \to \mathbb{R}_{\geq 0}$: $d_{\text{ext}}^2(X, Z) = d^2(X, \mathcal{P}(Z)) + ||\mathcal{P}(Z) - Z||^2$ 2
F, where $\mathcal{P} \colon \mathbb{R}^{n \times p} \to \text{St}(n, p)$ is the projector on $St(n, p)$.

Essential references

[1] A. Edelman, T. A. Arias, and S. T. Smith. The Geometry of Algorithms with Orthogonality Constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998. [2] J. L. Noakes. A global algorithm for geodesics. Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics, 65(1):37–50, 1998. [3] Y. Xu and W. Yin. A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion. SIAM Journal on Imaging Sciences, 6(3):1758-1789, 2013.