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Overview

I Several applications in optimization, image and signal processing deal with data
belonging to the Stiefel manifold

St(n, p) = {X ∈ Rn×p : X>X = Ip}.
I Some applications require evaluating the geodesic distance between two arbitrary

points on St(n, p). No closed-form solution is known for St(n, p).
I A new computational framework for computing the geodesic distance is proposed,

based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
I Two example applications:
. Karcher mean on the space of probability density functions (PDFs);
. Interpolation of data belonging to St(n, p) for parametric model reduction.

Geodesics on St(n, p)

I Geodesic: generalization of straight lines to manifolds.
I When the tangent space TXSt(n, p) is endowed with the canonical metric

gc(∆,∆) = tr(∆>(I − 1

2
XX>)∆), ∆ ∈ TXSt(n, p),

one can get the following ODE for the geodesic Z ≡ Z (t) [1, eq. (2.41)]:
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I Closed-form solution for a geodesic Z (t) that realizes a tangent vector ∆ with
base point X (Ross Lippert [1, eq. (2.42)]):

Z (t) = [X X⊥] exp
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Riemannian logarithm on St(n, p)

I Given X , Y ∈ St(n, p), the geodesic
distance d(X ,Y ) is the length of ∆∗ ≡v
Z (0) ∈ TXSt(n, p) s.t. the Riemannian ex-
ponential mapping ExpX (∆∗) = Y .

I Equivalent to: Find the Riemannian log-
arithm of Y with base point X , i.e.,
LogX (Y ) = ∆∗.
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I No closed-form solution to this problem is known for St(n, p)!

Geodesics via leapfrog (by L. Noakes [2])

I Based on subdivision, s.t. single shooting works well on each subinterval.
I Illustration of two iterations of the procedure, for m points:
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I Global convergence to ∆∗, but very slow. Deteriorates when m→∞ .

Geodesics via nonlinear block Gauss–Seidel [3]

I Alternating minimization: cyclically minimize F over each block variable Xi

min
X∈X

F (X1, . . . ,Xs)

while fixing the other blocks at their last updated values.
. Let X k

i denote the value of Xi after its kth update, and let

F k
i (Xi) = F (X k

1 , . . . ,X
k
i−1,Xi ,X

k−1
i+1 , . . . ,X

k−1
s ), ∀i , ∀k.

. At each step, the update is [3, Eq. (1.3a)]

X k
i = arg min

Xi∈X k
i

F k
i (Xi).

I Nonlinear block Gauss–Seidel or block coordinate descent method [3].

. Theory in [3] applies only in Euclidean
space Rn, not on Riemannian manifolds.

. Smooth extension of Riemannian distance
function d : St(n, p) × St(n, p) → R≥0

as d 2
ext : St(n, p)× Rn×p → R≥0:

d 2
ext(X ,Z ) = d 2(X ,P(Z ))+‖P(Z )−Z‖2

F ,

where P : Rn×p → St(n, p) is the projec-
tor on St(n, p).
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. Proof of convergence based on showing local strong convexity of d 2
ext(X

k
i−1,Xi).

. Connection to the Karcher mean of two points X k
i−1 and X k−1

i−1 .

Geodesics via multiple shooting

I Enforce continuity conditions of Z and
v
Z at

the interfaces between subintervals.
I Fast convergence to ∆∗.
I Σ

(k)
1 : point on St(n, p) relative to the kth

subinterval.
I Σ

(k)
2 : tangent vector to St(n, p) at Σ

(k)
1 .
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System of nonlinear equations:

F (Σ) :=
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= 0,

linearize−−−−→

For each subinterval k , we have an explicit

expression for the Jacobian G (k).

F (Σ)+
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O G (2) −I . . .

. . . . . . . . . O
O . . . G (m−1) −I
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︸ ︷︷ ︸

=:DF (Σ)

δΣ = 0.

I Complexity of multiple shooting with condensing is O(mn3p3).

Karcher mean of univariate probability density functions

I Karcher mean: one possible notion
of mean on a Riemannian manifoldM,
defined by the optimization problem

µ = arg min
p∈M

1

2N

N∑
i=1

d(p, qi)
2,

where d(p, qi) is the distance between
two points on M.

I Sn = {x ∈ Rn+1 : ‖x‖ = 1} can be used to approximate S∞, which represents
the space of univariate PDFs on the unit interval [0, 1], i.e., P = {g : [0, 1]→
R≥0 :

∫ 1
0 g(x) dx = 1}.

I Example: Karcher mean of 3 PDFs, sampled at 100 points, which makes them
belonging to St(100, 1).

Model reduction with POD and interpolation on St(n, r)

I Model reduction for dynamical systems parametrized with p = [p1, . . . , pd ]>:{ v
x(t; p) = A(p) x(t; p) + B(p) u(t),

y (t; p) = C (p) x(t; p),

x(t; p) ∈ Rn, u(t) ∈ Rm, y (t) ∈ Rq,

A(p) ∈ Rn×n, B(p) ∈ Rn×m, C (p) ∈ Rq×n.

reduction−−−−−→

{ v
x r(t; p) = Ar(p) x r(t; p) + B r(p) u(t),

y r(t; p) = C r(p) x r(t; p),

x r = V>x , Ar = V>AV , B r = V>B,
C r = CV , V ≡ V (p) ∈ St(n, r).

I For each parameter in a set of parameter values {p1,p2, . . . ,pK}, use proper
orthogonal decomposition (POD) to derive a reduced-order basis V i ∈ St(n, r).
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I This yields a set of local basis ma-
trices {V 1,V 2, . . . ,V K}.

I Given a new parameter value p̂, a
basis V̂ can be obtained by inter-
polating the local basis ma-
trices on a tangent space to
St(n, r).

I Application: transient heat equation on a square domain, with 4 disjoint discs.
I FEM discretization with n = 1169. Simulation for t ∈ [0, 500], with ∆t = 0.1.
I 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.
I Relative error between y (·; p̂) and y r(·; p̂) is about 1%.
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