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Overview

» Several applications in optimization, image and signal processing deal with data
belonging to the Stiefel manifold

St(n,p) = {X € R™”P: X'X = 1,}.
» Some applications require evaluating the geodesic distance between two arbitrary

points on St(n, p). No closed-form solution is known for St(n, p).
» A new computational framework for computing the geodesic distance is proposed,
based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
» Two example applications:

> Karcher mean on the space of probability density functions (PDFs);
> Interpolation of data belonging to St(n, p) for parametric model reduction.

Geodesics on St(n, p)

» Geodesic: generalization of straight lines to manifolds.

» When the tangent space TxSt(n, p) is endowed with the canonical metric

1
g(A, A) = tr(A' (] — 5XXT)A), A € TxSt(n, p),

one can get the following ODE for the geodesic Z = Z(t) [1, eq. (2.41)]:
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» Closed-form solution for a geodesic Z(t) that realizes a tangent vector A with
base point X (Ross Lippert [1, eq. (2.42)]):

Z(t) =[X Xi] exp<_j<qﬁ _(XéA) _ t> b

O

Riemannian logarithm on St(n, p)

» Given X, Y € St(n,p), the geodesic
distance d(X, Y) is the length of A, = w
Z(0) € TxSt(n, p) s.t. the Riemannian ex-
ponential mapping Expy(A,) =Y.

» Equivalent to: Find the Riemannian log-
arithm of Y with base point X, i.e.,
Logx(Y) = A,

» No closed-form solution to this problem is known for St(n, p)!

Geodesics via leapfrog (by L. Noakes [2])

» Based on subdivision, s.t. single shooting works well on each subinterval.
» |llustration of two iterations of the procedure, for m points:

» Global convergence to A,, but very slow. Deteriorates when m — oo .

Geodesics via nonlinear block Gauss—Seidel [3]

» Alternating minimization: cyclically minimize F over each block variable X;

min F(X, ..., X)
XeX

while fixing the other blocks at their last updated values.
> Let X/ denote the value of X; after its kth update, and let

FAOX) = FXE, .. X X XKL XETY), Vi, vk,

I+1

> At each step, the update is [3, Eq. (1.3a)]

XX = arg min FF(X).
X,’EXI-k

» Nonlinear block Gauss—Seidel or block coordinate descent method [3].

> Theory in [3] applies only in Euclidean
space R", not on Riemannian manifolds.
> Smooth extension of Riemannian distance
function d: St(n, p) x St(n, p) = Rxg

as d2.: St(n, p) x R™P — R ,
des(X, Z) = d*(X, P(2))+|P(2)-Z]IF,

where P: R"™P — St(n, p) is the projec-
tor on St(n, p).
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St(n, p)
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> Proof of convergence based on showing local strong convexity of d” .
> Connection to the Karcher mean of two points X ; and X**.
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Geodesics via multiple shooting

» Enforce continuity conditions of Z and Z at
the interfaces between subintervals.

» Fast convergence to A..

> ng): point on St(n, p) relative to the kth
subinterval.

> ng): tangent vector to St(n, p) at ng).

System of nonlinear equations: For each subinterval k, we have an explicit

i Zl(l) B Zgz) . expression for the Jacobian G¥).
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» Complexity of multiple shooting with condensing is O(mn3p3).

Karcher mean of univariate probability density functions

» Karcher mean: one possible notion " | 08  —
of mean on a Riemannian manifold M, % / 0.25
defined by the optimization problem 0.2 |02
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where d(p, g;) is the distance between ol N\ '

_ 0 0.5 1 0 05 1
two points on M. : .

» 8" = {x € R"™! : ||x|]| = 1} can be used to approximate S, which represents
the space of univariate PDFs on the unit interval [0,1],i.e., P ={g :[0,1] —
1
R>o: [, g(x)dx = 1}.
» Example: Karcher mean of 3 PDFs, sampled at 100 points, which makes them

belonging to St(100, 1).

Model reduction with POD and interpolation on St(n, r)

» Model reduction for dynamical systems parametrized with p = [p1, ..., pg] "

x(t; p) = A(p) x(t; p) + B(p) u(t), x(t; p) = A(p) x,(t; p) + B.(p) u(t),
y(t; p) = C(p) x(t; p), reduction | Y +(t: P) = C.(p) x,(t; P),

x(t;p) €R",  wu(t) €R™, y(t) € RY, x,=V'x, A =V'AV, B,=V'B,
A(p) € R™" B(p) € R™™,  C(p) € R™". C,=CV, V=V(p)eSt(n,r).

» For each parameter in a set of parameter values {p;, py,..., Px}, use proper

orthogonal decomposition (POD) to derive a reduced-order basis V; € St(n, r).

» This yields a set of local basis ma-
trices {Vl, Vo, ..., VK}

» Given a new parameter value p, a
basis V can be obtained by inter-
polating the local basis ma-
trices on a tangent space to
St(n, r).

» Application: transient heat equation on a square domain, with 4 disjoint discs.

» FEM discretization with n = 1169. Simulation for t € [0, 500], with At = 0.1.
» 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.
» Relative error between y(-; p) and y,(; p) is about 1%.

Univariate interpolation on St(n,r) Relative error of the reduced model
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K = number of p; r = size of the reduced model
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