

Connecting geodesics for the Stiefel manifold Marco Sutti and Bart Vandereycken

Section of Mathematics, University of Geneva

Overview

Several applications in optimization, image and signal processing deal with data belonging to the **Stiefel manifold**

 $\operatorname{St}(n,p) = \{X \in \mathbb{R}^{n \times p} : X^{\top}X = I_p\}.$

- Some applications require evaluating the geodesic distance between two arbitrary points on St(n, p). No closed-form solution is known for St(n, p).
- A new computational framework for computing the geodesic distance is proposed, based on the multiple shooting method and the leapfrog algorithm by L. Noakes.
- **Two example applications**:
- Karcher mean on the space of probability density functions (PDFs);
- \triangleright Interpolation of data belonging to St(n, p) for parametric model reduction.

Geodesics via multiple shooting

- Enforce continuity conditions of Z and Z at the interfaces between subintervals.
- Fast convergence to Δ_* .
- $\succ \Sigma_1^{(k)}$: point on St(n, p) relative to the *k*th subinterval.
- $\succ \Sigma_2^{(k)}$: tangent vector to St(n, p) at $\Sigma_1^{(k)}$.

System of nonlinear equations:

For each subinterval k, we have an **explicit expression** for the Jacobian $G^{(k)}$.

 $= 0, \xrightarrow{\text{linearize}} F(\Sigma) + \begin{bmatrix} G^{(1)} & -I & O & O \\ O & G^{(2)} & -I & \cdots \\ & \ddots & \ddots & \ddots & O \\ O & & \ddots & G^{(m-1)} & -I \end{bmatrix}$ $\delta \Sigma = 0.$

Geodesics on St(n, p)

- **Geodesic**: generalization of straight lines to manifolds.
- \blacktriangleright When the tangent space $T_X St(n, p)$ is endowed with the canonical metric

 $g_c(\Delta, \Delta) = \operatorname{tr}(\Delta^{\top}(I - \frac{1}{2}XX^{\top})\Delta), \quad \Delta \in T_X \operatorname{St}(n, p),$ one can get the following ODE for the geodesic $Z \equiv Z(t)$ [1, eq. (2.41)]: $\vec{Z} + \vec{Z}\vec{Z}^{\top}Z + Z((Z^{\top}\vec{Z})^2 + \vec{Z}^{\top}\vec{Z}) = 0.$

 \triangleright Closed-form solution for a geodesic Z(t) that realizes a tangent vector Δ with base point X (Ross Lippert [1, eq. (2.42)]):

 $Z(t) = \begin{bmatrix} X \ X_{\perp} \end{bmatrix} \exp\left(\begin{bmatrix} X^{\top} \Delta & -(X_{\perp}^{\top} \Delta)^{\top} \\ X_{\perp}^{\top} \Delta & O \end{bmatrix} t \right) \begin{bmatrix} I_p \\ O \end{bmatrix}.$

 $T_X \operatorname{St}(n,p)$

 $Y \bullet$

 $\operatorname{St}(n,p)$

Riemannian logarithm on St(n, p)

- \blacktriangleright Given X, Y \in St(n, p), the geodesic **distance** d(X, Y) is the length of $\Delta_* \equiv$ $Z(0) \in T_X St(n, p)$ s.t. the Riemannian exponential mapping $\operatorname{Exp}_X(\Delta_*) = Y$.
- Equivalent to: Find the Riemannian log**arithm** of Y with base point X, i.e., $\operatorname{Log}_X(Y) = \Delta_*.$
- No closed-form solution to this problem is known for St(n, p)!

 \triangleright Complexity of multiple shooting with *condensing* is $O(mn^3p^3)$.

Karcher mean of univariate probability density functions

Karcher mean: one possible notion of mean on a Riemannian manifold $\mathcal{M}_{,}$ defined by the optimization problem

$$\mu = \operatorname*{arg\,min}_{p \in \mathcal{M}} rac{1}{2N} \sum_{i=1}^{N} d(p, q_i)^2,$$

- where $d(p, q_i)$ is the distance between two points on \mathcal{M} .
- $\triangleright S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ can be used to approximate S^{∞} , which represents the space of univariate PDFs on the unit interval [0, 1], i.e., $\mathcal{P} = \{g : [0, 1] \rightarrow$ $\mathbb{R}_{\geq 0}: \int_0^1 g(x) \,\mathrm{d}x = 1 \}.$
- **Example**: Karcher mean of 3 PDFs, sampled at 100 points, which makes them belonging to St(100, 1).

Model reduction with POD and interpolation on St(n, r)

Geodesics via leapfrog (by L. Noakes [2])

- Based on subdivision, s.t. single shooting works well on each subinterval.
- Illustration of two iterations of the procedure, for m points:

▶ Global convergence to Δ_* , but very slow. Deteriorates when $m \to \infty$.

Geodesics via nonlinear block Gauss–Seidel [3]

> Alternating minimization: cyclically minimize F over each block variable X_i

 $\min_{X \in \mathcal{X}} F(X_1, \ldots, X_s)$

while fixing the other blocks at their last updated values. \triangleright Let X_i^k denote the value of X_i after its kth update, and let $F_{i}^{k}(X_{i}) = F(X_{1}^{k}, \ldots, X_{i-1}^{k}, X_{i}, X_{i+1}^{k-1}, \ldots, X_{s}^{k-1}), \quad \forall i, \forall k.$ \triangleright At each step, the update is [3, Eq. (1.3a)] $X_i^k = \arg\min F_i^k(X_i).$ $X_i \in \mathcal{X}_i^k$

▶ Model reduction for dynamical systems parametrized with $p = [p_1, \ldots, p_d]^\top$:

 $\begin{cases} \dot{x}(t; p) = A(p) x(t; p) + B(p) u(t), \\ y(t; p) = C(p) x(t; p), \end{cases} \xrightarrow{\text{reduction}} \begin{cases} \dot{x}_r(t; p) = A_r(p) x_r(t; p) + B_r(p) u(t), \\ y_r(t; p) = C_r(p) x_r(t; p), \end{cases}$ $\mathbf{x}(t; \mathbf{p}) \in \mathbb{R}^n, \quad \mathbf{u}(t) \in \mathbb{R}^m, \quad \mathbf{y}(t) \in \mathbb{R}^q, \qquad \mathbf{x}_r = \mathbf{V}^\top \mathbf{x}, \quad \mathbf{A}_r = \mathbf{V}^\top \mathbf{A} \mathbf{V}, \quad \mathbf{B}_r = \mathbf{V}^\top \mathbf{B},$ $A(p) \in \mathbb{R}^{n \times n}, \quad B(p) \in \mathbb{R}^{n \times m}, \quad C(p) \in \mathbb{R}^{q \times n}. \qquad C_r = CV, \quad V \equiv V(p) \in \mathrm{St}(n, r).$

For each parameter in a set of parameter values $\{p_1, p_2, \ldots, p_K\}$, use proper orthogonal decomposition (POD) to derive a reduced-order basis $V_i \in St(n, r)$.

- This yields a set of local basis matrices $\{V_1, V_2, ..., V_K\}.$
- \blacktriangleright Given a new parameter value \hat{p} , a basis $\hat{\mathbf{V}}$ can be obtained by interpolating the local basis matrices on a tangent space to St(n, r).

Application: transient heat equation on a square domain, with 4 disjoint discs. FEM discretization with n = 1169. Simulation for $t \in [0, 500]$, with $\Delta t = 0.1$.

- ▶ 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.
- Relative error between $y(\cdot; \hat{p})$ and $y_r(\cdot; \hat{p})$ is about 1%.

Nonlinear block Gauss–Seidel or block coordinate descent method [3].

 $\mathcal{P}_{\mathrm{St}}(Z)$

 $d(X, \mathcal{P}_{\mathrm{St}}(Z))$

 $\operatorname{St}(n,p)$

 $X \bullet$

▶ Theory in [3] applies only in Euclidean space \mathbb{R}^n , not on Riemannian manifolds. Smooth extension of Riemannian distance function $d: \operatorname{St}(n,p) \times \operatorname{St}(n,p) \to \mathbb{R}_{>0}$ as d_{ext}^2 : $\operatorname{St}(n,p) \times \mathbb{R}^{n \times p} \to \mathbb{R}_{>0}$: $d_{\text{ext}}^{2}(X, Z) = d^{2}(X, \mathcal{P}(Z)) + \|\mathcal{P}(Z) - Z\|_{F}^{2}$ where $\mathcal{P}: \mathbb{R}^{n \times p} \to \mathrm{St}(n, p)$ is the projector on St(n, p).

 \triangleright Proof of convergence based on showing local strong convexity of $d_{ext}^2(X_{i-1}^k, X_i)$. \triangleright Connection to the **Karcher mean** of two points X_{i-1}^k and X_{i-1}^{k-1} .

Essential references

[1] A. Edelman, T. A. Arias, and S. T. Smith. The Geometry of Algorithms with Orthogonality Constraints. SIAM Journal on Matrix Analysis and Applications, 20(2):303–353, 1998. [2] J. L. Noakes. A global algorithm for geodesics. *Journal of the Australian Mathematical Society.* Series A. Pure Mathematics and Statistics, 65(1):37–50, 1998. [3] Y. Xu and W. Yin. A Block Coordinate Descent Method for Regularized Multiconvex Optimization with Applications to Nonnegative Tensor Factorization and Completion. SIAM Journal on Imaging Sciences, 6(3):1758–1789, 2013.