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Overview

» Numerical algorithms on matrix
manifolds.

> Exploit geometric structure, take into
account the constraints.

Trt1 = Rep (temk)

Talk:
» Numerical optimization in R” (steepest descent method).
» Numerical optimization on matrix manifolds, fundamental ideas and tools.

» Riemannian multilevel optimization on the manifold of fixed-rank matrices.
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I. Numerical optimization in IR"



Steepest descent (SD)/1

> Steepest descent method (3 [ T % %), ﬂ
gradient descent (¥ & T % i%), gradient / ‘
method, ... / (i

> First-order method: it only uses Vs =
information on the function values and ¥
its derivatives. D N

» SD has many variants: projected, /
accelerated, conjugate, coordinatewise, 3
stochastic...

Steepest descent: [Cauchy 1847, Hadamard 1907], ...

Numerical optimization: [Nesterov 2004, Nocedal/Wright 2006], ...
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Steepest descent (SD)/2

» Consider the specific case of unconstrained optimization problem, i.e.,

min f(x
erR"f ()

where f(x) may (or may not) have certain properties (e.g., convexity).

> Many optimization methods (like SD) are of the form
X1 = X + Lk 7]
where t; > 0 is the step size and 7j; € R" is the search direction.

> Descent type: f(xgs1) < f(xg).

~> How to choose Nik?

» Steepest descent direction: 17, = —V f(x).
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Line-search (LS) method

~> How to calculate £;.?

> Exact line search (LS):
min f(x; +1
nin f (xe + t7x)
> t,EX is the unique minimizer if f is strictly convex.

> Can sometimes be computed. Good for theory.

» In practice, for generic f, we do not use exact LS. Replace exact LS with
something computationally cheaper, but still effective.

~> Armijo line-search (also known as Armijo backtracking, Armijo
condition, sufficient decrease condition...).

Armijo line-search technique: [Armijo 1966]
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Steepest descent on a quadratic cost function/1

gliRr;f(x), f(x)= %xTAx, A= [40 0 ]

replay replay
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Steepest descent on a quadratic cost function/2

. 11 60 15
Ei{rzlf(x), f(x)—Ex Ax, A_[—15 10}.

replay replay
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II. Optimization on matrix manifolds



any manifold that is constructed from IR"*P by taking
either embedded submanifolds or quotient manifolds.

» Examples of embedded submanifolds: orthogonal Stiefel manifold, oblique
manifold, manifold of symplectic matrices, manifold of fixed-rank matrices
(later), ...

» Example of quotient manifold: the Grassmann manifold (not in this talk).

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2022], ...
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The Stiefel manifold/1

» Set of matrices with orthonormal columns:
St(n,p) = (X e R™P: XX =1I,}.

> Tangent space to M at x: set of all tangent
vectors to M at x, denoted T, M. For St(n, p),

TxSt(n,p)={Z e R"™P: X"Z + Z"X = 0}.

TxSt(n,p)

Eduard L. Stiefel (1909 — 1978)

Stiefel manifold: [Stiefel, 1935]
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The Stiefel manifold/2

» Alternative characterization:

TxSt(n,p) = {XQ+X K: Q=-Q7, K e R"P>p},

» Dimension: since dim(St(n,p)) = dim(TXSt(n,p)), the dimension of the
Stiefel manifold is

dim(St(n, p)) = dim(Syxew) + dim(R"P>P) = np — Lp(p +1).
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Riemannian manifold

A manifold M endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

~> A couple (M, g), i.e., a manifold with a Riemannian metric on it.

~> For the Stiefel manifold:
» Embedded metric (inherited by TxSt(#, p) from the embedding space R™*P)
(& n)x =trace(ETn), & 1 € TxSt(n,p).
» Canonical metric

g.(&,n) =trace(ET(I - %XXT)q), &, 11 € TxSt(n, p).

» Projection onto the tangent space

P sinp) & = Xskew(X"&) +(I-XXT)&.
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Riemannian gradient

~> For any embedded submanifold:

» Riemannian gradient: projection onto Ty M of the Euclidean gradient

grad f(X) = P, m(Vf (X))

~> Recall: for the Stiefel manifold, the projection onto the tangent space is
P si(np)& = Xskew(XTE) +(I-XX")&.

~> Vf(X) is the Euclidean gradient of f(X). For example, for f(x) = x' Ax, one
has Vf(x) = 2Ax.

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, ...
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Steepest descent is based on the update formula
X1 = X + Lk 7]

where f; € R is the step size and is the search direction.

will be a tangent vector to M at xy, i.e.,

Search in M whose tangent vector at t = 0 is 7.

Tp+1 = Ry, (temk)
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Move in the direction of & while remaining constrained to M.

Smooth mapping R, : T, M — M with a local condition that preserves
gradients at x.

The is also a retraction, but it is not
computationally efficient.

Retractions: [Absil/Malick 2012]
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Let M be an embedded submanifold of a vector space £. Thus T, M is a linear
subspace of T,€ ~ £. Since x e M C € and & € T, M C T,€ ~ £, with little abuse
of notation we write x+ & € £.

to define a retraction R, (&) for

Move along & to getto x+ & in &.

Map x + & back to M. For matrix manifolds, use matrix decompositions.

Let M = §"° !, then the
retraction at x € S™! is

’

_ x+&
R

Ry(¢)

defined for all & € T,S""!. R, (&) is
the point on S”~! that minimizes the
distance to x + &.
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Retractions on the Stiefel manifold

. . . nx
given a generic matrix A € R, P

(~ polar form of a complex number):

A=UP, with Ue€St(np), PEe€Sym+(p)

(~ Gram—-Schmidt algorithm):
A=QR, with QEeSt(n,p), REeSupp+(p)
Let X € St(n,p) and & € TxSt(n, p).
~> Retraction based on the polar decomposition:
Rx(£)= (X +&)(I+&£TE)2
~> Retraction based on the QR factorization:
Rx (&) = qf(X + <),

where qf(A) denotes the Q factor of the QR factorization.
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Steepest descent on manifolds is based on the update formula

X+l = (tk1k)s
where 7, € R and
Recipe for constructing the steepest descent method on a manifold:

Choose a

Select a

> Select a step length .

.
Tpt1 = R, (temr)
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Rayleigh quotient on the sphere/1

» Compute a dominant eigenvector of a symmetric matrix A € R,

> Let A be the largest eigenvalue of A, and v; the associated normalized
eigenvector, i.e.,
Avl = /\11}1.
» Then A, is a maximum value of f : S"1 5 R, defined by x — xTAx.

> We can state the optimization problem as

min —xTAx,
xeSn-1

where S"~! = {x € R": ||x|| = 1} is the unit (1 — 1)-sphere.
» Euclidean gradient: Vf(x) = —2Ax.

> The global maximizers of the Rayleigh quotient are +v;.

Rayleigh quotient on the sphere: [Absil/Mahony/Sepulchre 2008], ...
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Rayleigh quotient on the sphere/2

> MATLAB toolbox Manopt.

» Riemannian SD using standard line search with Armijo condition.

9

» Generate random problem data.

n = 1000;
3 |A = randn(n) ;
A = .5*(A+A.’%);

wn

% Create the problem structure.
manifold = spherefactory(n) ;
problem.M = manifold;

% Define the problem cost function and its Euclidean gradient.
11 |problem.cost = @(x) -x’*(A*X);
problem.egrad = @(x) -2*A*Xx;

options.maxiter = 400;

% Solve.
17 | [ x, xcost, info, ~ ] = steepestdescent( problem, [], options );

Manopt: [Boumal/Mishra/Absil/Sepulchre 2014], www.manopt.org
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Rayleigh quotient on the sphere/3

> Convergence behavior of steepest descent when applied to the Rayleigh quotient on
the sphere. The cost function value at the kth iteration is denoted by f, the optimal
cost value is f*, and the Riemannian gradient is denoted by g.

10"1 o | f=f7] ] 10°¢ —o—||gxll/llgoll |
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iteration k of steepest descent iteration k of steepest descent

More accurate line-search technique: [Hager/Zhang 2005-2006], [S./Vandereycken 2021]
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Brockett cost function on the Stiefel manifold/1

> Cost function defined as a weighted sum ) ; yix(Ti)Ax(i) of Rayleigh quotients

on the sphere under the orthogonality constraint x(Tl.)x( j) = 0ij.

» Matrix form

f:St(n,p) > R: X > trace(XTAXN),

where A € R™" is symmetric and N = diag(y,..., ]/lp), with
0<p <...<pp.

> We can state the optimization problem as

min trace(XTAXN).
XeSt(n,p)

» Euclidean gradient: Vf(X) = 2AXN.

Brockett cost function: [Brockett 1993]
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Brockett cost function on the Stiefel manifold/2

wn

% Generate random problem data.
= 10;

= 33

= randn(n) ;

= .5°(A+A.’);

> > B

% The matrix containing the weights (sorted in ascending order)
N = diag(sort(abs(randn(p,1))));

% Create the problem structure.
manifold = stiefelfactory(n,p);
problem.M = manifold;

% Define the problem cost function and its Euclidean gradient.
problem.cost = @(X) trace(X’*A*X*N);
problem.egrad = @(X) 2*A*X*N;

options.maxiter = 400;

% Solve.
[ x, xcost, info, ~ ] = steepestdescent( problem, [], options );

Manopt: [Boumal/Mishra/Absil/Sepulchre 2014], www.manopt.org
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Brockett cost function on the Stiefel manifold/3

> Convergence behavior of steepest descent when applied to the Brockett cost function
on the Stiefel manifold. The cost function value at the kth iteration is denoted by fi,
the optimal cost value is f*, and the Riemannian gradient is denoted by g.
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25/33



III. Riemannian multilevel optimization



Overview

> New algorithm to solve large-scale optimization problems.

» Minimize a cost function on the Riemannian manifold of fixed-rank matrices
using a multigrid idea.

» Low-rank format for efficient implementation.
> Multilevel idea of Multigrid Line-Search (MGLS) [Wen/Goldfarb 2009].
~> Riemannian Multigrid Line Search (RMGLS).

https://doi.org/10.1137/20M1337430
MATLAB code available: https://doi.org/10/ghpéng

Riemannian Multigrid Line-Search (RMGLS): [S./Vandereycken 2021]
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https://doi.org/10.1137/20M1337430
https://doi.org/10/ghp6ng

The manifold of fixed-rank matrices
» Our optimization problem is defined over

M = {X e R"™": rank(X) = k}.

» Like St(7, p), M also has a smooth structure ...

2 x 2 example:

Parametrization:
rank(X) =1 & xz=y? and x,z = 0.

Theorem: My is a smooth Riemannian submanifold embedded in R"*" of
dimension k(m + n —k).

Optimizing on submanifold Mj: [Vandereycken 2010]
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Alternative characterization, tangent vectors

» Using the SVD, one has the equivalent characterization

My ={UXZVT: UTU =1L, V'V = I, X =diag(c;), 07 >---> 0y > 0).

> A tangent vector & at X = UX V7 is represented as
E=UMVT+U,V'+UV,,
MeRY, U, eR™*, UjU=0, V,eR™, VJV=o.
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Metric, projection, gradient

» The Riemannian metric is
gx(&n) =(&n) = trace(éTq), with X e M, and &, € TxM;,

where &, 7 are seen as matrices in the ambient space IR"*".

» Orthogonal projection onto the tangent space at X is

PTXMk:Rmxn—)Tka, Z—>PUZPV+P$ZPV+PUZP‘L,

» Riemannian gradient: projection onto Tx M, of the Euclidean gradient

grad f (X) = Py a4, (V£ (X))
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Retraction on the manifold of fixed-rank matrices

» Retraction Ry : Ty My — M. Typical: truncated SVD.

> Alternative: Orthographic retraction. Given X = UXVT and
E=UMVT+U,V'+ UV, with UTU, =0 and V'V, =0,

Rx(&) = (U(Z+M)+U,)(E+M) (Z+M)VT+ V).

» Inverse orthographic retraction of Y at X:

RH(Y) =Py, (Y - X).

Many retractions: [Absil/Malick 2012, Absil/Oseledets 2015]

31/33



Multilevel optimization in Euclidean space
> Multigrid idea for solving A on several fine and coarse grids.

» Fine grid -;, smooths the error (with cheap algorithm). Coarse grid -

computes smooth correction (by recursion). Transfer operators [ f and [ 1@

between grids (by interpolation).

Ifhnelgzlh fh(xh)

Th — == Q
'Y
<Oy

(GaY)
T = //(LH Op

min ¢y (zy) recursive cycling
THEQH

Multigrid: [Hackbusch 1985, Brandt et al. 1985], ...
Multilevel optimization: [Nash 2000, Lewis/Nash 2005, Wen/Goldfarb 2009], ...
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Generalization to Riemannian manifolds

Our contribution: extend to manifolds.

g fu(n)

min Yy (zy) \zecursive cycling/'
€My

~> Riemannian Multigrid Line-Search (RMGLS).

gt |
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IV. Bonus material



Armijo backtracking example

Backtracking line search
T T

—¢k(t) = f(ar +tdy)
U (t) = f(an) facit Vi (x) dy

(1] 0.4 0.6 0.8 1




Armijo backtracking example

Backtracking line search
T

T

t® = ¢ t®

ol
=
-
05
@t
o 1
—@(t) := f(zk + tds)
b(t) = flax) + et V f(zr) di
© datal
15 | | I I I
0 0.2 04 06 08 1



Armijo backtracking example

ol
5
05
t flzx)
@t
o
—6(t) = flar +tdy)
0 (t) := f(ax) + et V(zy) dy
o datal
o data2
1.5 L

Backtracking line search
T

T

t®) = ¢t

t® = ¢ t®

(1]

0.4 0.6

0.8




Armijo backtracking example

Backtracking line search
T

t® = ¢ t®

ol
= t®) = ¢t
SS
-0.5 —
‘ i; (k) @ = 4
O X

|0 = F (@i +tdi)
T 6@ = fzr) +at Vi (zk) Tdk 7
© datal
© data2
© data3

(1] 0.4 0.6 0.8 1



Armijo backtracking example

Backtracking line search
T

t® = ¢ t®

t®) = ¢t

sl T f(@k)

@t
s

—(t) = f(zx +tdi)
0(t) == f(a) + et Vi(zr) Tde

71 o datal

© data2

© data3

Odata4

@ = ¢, t®)

(1] 0.4 0.6 0.8 1



Stiefel manifold, special case of the orthogonal group

If p = n, then the Stiefel manifold reduces to the orthogonal group
0,={XeR™: X'X =1,)},
and the tangent space at X is given by
Tx 0, ={XQ: QT = —Q)} = XSyew(n).

In particular, if X = I,,, we have T; O,, = Ssiew (7). This means that the tangent
space to O,, at the identity matrix I, is the set of skew-symmetric n-by-n matrices
Sskew (). In the language of Lie groups, we say that Sgyeyw (1) is the Lie algebra of
the Lie group O,,.



R,(0,) = x, where 0, is the zero
element of T, M.

With the identification

Ty, T, M ~ T, M, the retraction
R, satisfies the local rigidity
condition

DR,(04) = ideM'

Turn points of T, M into points of M.

Transform cost functions defined in a neighborhood of x € M into cost
functions defined on the vector space T, M.



Coarse-grid correction

MG/Opt: for fixed xg), minimize for ey the coarse-grid objective

P +ey) = el + en)— () + eqr, Vi (x\)) = IV £ (%)

> To extend to manifolds, we interpret ey as a tangent vector, + as retraction,
and (-,-) as Riemannian metric.

» The linear modification of the coarse-grid cost function:
P ToMy =R
H H

defined by

—

Yo 01m) = faR o (M0)) — 9,6 (1 kr),

with retraction Rx(z'), Riemannian metric 8.0 and
H H

ki = grad fir(x17) I} (grad (%)) € Ty M.



Smoothers

> Many options for smoothers, but they need to be compatible with
optimization, like SD or L-BFGS.

» Point smoother, but also line smoothers are possible using cheap
preconditioning or quasi-Newton.

> We take half the step size in steepest descent. Similar to Jacobi iteration as
smoother.

> For isotropic problems, a small number (5) of steepest descent steps for
Riemannian manifolds suffices.



Lyapunov equation — problem statement

> Consider the minimization problem

min 7 (w(x,y)) = J;) HIVw(x, p)II* - y(x,v) w(x,p)dxdy
such that w =0 on dQ,

where 2 =[0,1]x[0,1] and y = 0 on dQ.
» The variational derivative (Euclidean gradient) of F is

oF
— =—Aw—y.
ow vy

> Discretization gives the LHS of a Lyapunov equation
Ahwh ar WhAh = Fh’

where A}, is the discretized minus Laplacian.

> Linear problem, but typical problem for which low-rank methods work very
well [Grasedyck 2004, Sabino 2006, Simoncini 2016]:

r = O(rank(I;) log(1/¢) log x(Ap)).



Lyapunov — typical convergence

Example: V-cycle, finest level = 8 (about 250 000 gridpoints), coarsest level = 2,
rank = 5, number of smoothing steps = 5.

Presmoothing
Postsmoothing
@ er-F
m R-grad




Lyapunov — dependence on mesh

> V-cycle, coarsest level = 2.

> The sizes of the discretizations are 16384 (=), 65536 (¢), 262144 (o) and
1048576 ().

rank k =5 rank k =10




Nonlinear PDE - problem statement
» Nonlinear PDE

—Aw+Aw(w+1)-y=0 inQ,
w=0 ondQ.

> Prescribe as exact solution (numerical rank 9):

1

Wex = 1p sin(47(x?

-x)(°-v))

> We get the term
Y = —AWey + AWey (Wey + 1).

> Obtain the variational problem

. 1 2 2(1 1
mu}n}'(w):fQiIleII + Aw (§w+7)—ywdxdy
such that w =0 on dQ.

Existing variational problem: [Henson 2003, Wen/Goldfarb 2009]



Nonlinear PDE - similar numerical experiment

Mesh-independent convergence

Error err-W with € = 8

Presmoothing

iteration i of RMGLS



Nonlinear PDE - Rank truncated Euclidean MG

Rank-truncated Euclidean multigrid (EMG) vs RMGLS for different ranks.

In both cases, 8 smoothing steps and coarsest level 7 are used.

EMG
level size time (s) r(WPEend)) time (s) ||£}(,end)||}: r(W}(lend))
S|9 262144 30 4.7324x 1077 7.8437x 10713 3.7321x 1077
=10 1048576 123  3.4975x 1077 4.0398x107%  1.8660x 1077
g1 4194304 797 1.2826x 107> 5.5800x1071%  9.3301x107%
v |9 262144 107  7.4928x 10710 2.0183x107'3  4.2886x1071°
=110 1048576 380  9.6225x107'° 6.5306x107'%  2.6044x 10710
S 11 4194304 3113 4.3682x 10710 1.3610x 1071  8.3563x 1071




