Numerical optimization on matrix manifolds

Marco Sutti

AS-NCTS Geometry Seminar
April 29, 2022

Overview

- Numerical algorithms on matrix manifolds.
- Exploit geometric structure, take into account the constraints.

Talk:
$>$ Numerical optimization in \mathbb{R}^{n} (steepest descent method).

- Numerical optimization on matrix manifolds, fundamental ideas and tools.
- Riemannian multilevel optimization on the manifold of fixed-rank matrices.

I. Numerical optimization in \mathbb{R}^{n}

Steepest descent（SD）／1

－Steepest descent method（最陡下降法）， gradient descent（梯度下降法），gradient method，．．．
－First－order method：it only uses information on the function values and its derivatives．
－SD has many variants：projected， accelerated，conjugate，coordinatewise， stochastic．．．

Steepest descent：［Cauchy 1847，Hadamard 1907］，．．．
Numerical optimization：［Nesterov 2004，Nocedal／Wright 2006］，．．．

Steepest descent (SD)/2

- Consider the specific case of unconstrained optimization problem, i.e.,

$$
\min _{x \in \mathbb{R}^{n}} f(x),
$$

where $f(x)$ may (or may not) have certain properties (e.g., convexity).

- Many optimization methods (like SD) are of the form

$$
x_{k+1}=x_{k}+t_{k} \eta_{k}
$$

where $t_{k}>0$ is the step size and $\eta_{k} \in \mathbb{R}^{n}$ is the search direction.
$>$ Descent type: $f\left(x_{k+1}\right)<f\left(x_{k}\right)$.
\leadsto How to choose η_{k} ?
∇ Steepest descent direction: $\eta_{k}=-\nabla f(x)$.

Line-search (LS) method

\leadsto How to calculate t_{k} ?

- Exact line search (LS):

$$
\min _{t \geq 0} f\left(x_{k}+t \eta_{k}\right)
$$

$>t_{k}^{\mathrm{EX}}$ is the unique minimizer if f is strictly convex.

- Can sometimes be computed. Good for theory.
- In practice, for generic f, we do not use exact LS. Replace exact LS with something computationally cheaper, but still effective.
\leadsto Armijo line-search (also known as Armijo backtracking, Armijo condition, sufficient decrease condition...).

Steepest descent on a quadratic cost function/1

$$
\min _{x \in \mathbb{R}^{2}} f(x), \quad f(x)=\frac{1}{2} x^{\top} A x, \quad A=\left[\begin{array}{cc}
40 & 0 \\
0 & 40
\end{array}\right] .
$$

Steepest descent on a quadratic cost function/2

$$
\min _{x \in \mathbb{R}^{2}} f(x), \quad f(x)=\frac{1}{2} x^{\top} A x, \quad A=\left[\begin{array}{cc}
60 & -15 \\
-15 & 10
\end{array}\right] .
$$

II. Optimization on matrix manifolds

Matrix manifolds

- Matrix manifold: any manifold that is constructed from $\mathbb{R}^{n \times p}$ by taking either embedded submanifolds or quotient manifolds.
- Examples of embedded submanifolds: orthogonal Stiefel manifold, oblique manifold, manifold of symplectic matrices, manifold of fixed-rank matrices (later), ...
- Example of quotient manifold: the Grassmann manifold (not in this talk).

The Stiefel manifold/1

- Set of matrices with orthonormal columns:

$$
\operatorname{St}(n, p)=\left\{X \in \mathbb{R}^{n \times p}: X^{\top} X=I_{p}\right\} .
$$

- Tangent space to \mathcal{M} at x : set of all tangent vectors to \mathcal{M} at x, denoted $T_{x} \mathcal{M}$. For $\operatorname{St}(n, p)$,

$$
T_{X} \operatorname{St}(n, p)=\left\{Z \in \mathbb{R}^{n \times p}: X^{\top} Z+Z^{\top} X=0\right\} .
$$

Stiefel manifold: [Stiefel, 1935]

The Stiefel manifold/2

- Alternative characterization:

$$
T_{X} \operatorname{St}(n, p)=\left\{X \Omega+X_{\perp} K: \Omega=-\Omega^{\top}, K \in \mathbb{R}^{(n-p) \times p}\right\} .
$$

Dimension: since $\operatorname{dim}(\operatorname{St}(n, p))=\operatorname{dim}\left(T_{X} \operatorname{St}(n, p)\right)$, the dimension of the Stiefel manifold is

$$
\operatorname{dim}(\operatorname{St}(n, p))=\operatorname{dim}\left(\mathcal{S}_{\text {skew }}\right)+\operatorname{dim}\left(\mathbb{R}^{(n-p) \times p}\right)=n p-\frac{1}{2} p(p+1)
$$

Riemannian manifold

A manifold \mathcal{M} endowed with a smoothly-varying inner product (called Riemannian metric g) is called Riemannian manifold.
\leadsto A couple (\mathcal{M}, g), i.e., a manifold with a Riemannian metric on it.
\leadsto For the Stiefel manifold:
\triangleright Embedded metric (inherited by $T_{X} \operatorname{St}(n, p)$ from the embedding space $\mathbb{R}^{n \times p}$)

$$
\langle\xi, \eta\rangle_{X}=\operatorname{trace}\left(\xi^{\top} \eta\right), \quad \xi, \eta \in T_{X} \operatorname{St}(n, p)
$$

- Canonical metric

$$
g_{c}(\xi, \eta)=\operatorname{trace}\left(\xi^{\top}\left(I-\frac{1}{2} X X^{\top}\right) \eta\right), \quad \xi, \eta \in T_{X} \operatorname{St}(n, p)
$$

- Projection onto the tangent space

$$
\mathrm{P}_{T_{X} \operatorname{St}(n, p)} \xi=X \operatorname{skew}\left(X^{\top} \xi\right)+\left(I-X X^{\top}\right) \xi
$$

Riemannian gradient

\leadsto For any embedded submanifold:

- Riemannian gradient: projection onto $T_{X} \mathcal{M}$ of the Euclidean gradient

$$
\operatorname{grad} f(X)=\mathrm{P}_{T_{X} \mathcal{M}}(\nabla f(X))
$$

\leadsto Recall: for the Stiefel manifold, the projection onto the tangent space is

$$
\mathrm{P}_{T_{X} \operatorname{St}(n, p)} \xi=X \operatorname{skew}\left(X^{\top} \xi\right)+\left(I-X X^{\top}\right) \xi
$$

$\leadsto \nabla f(X)$ is the Euclidean gradient of $f(X)$. For example, for $f(x)=x^{\top} A x$, one has $\nabla f(x)=2 A x$.

Steepest descent on a manifold

Recall: Steepest descent in \mathbb{R}^{n} is based on the update formula

$$
x_{k+1}=x_{k}+t_{k} \eta_{k},
$$

where $t_{k} \in \mathbb{R}$ is the step size and $\eta_{k} \in \mathbb{R}^{n}$ is the search direction.
\leadsto On nonlinear manifolds:
$>\eta_{k}$ will be a tangent vector to \mathcal{M} at x_{k}, i.e., $\eta_{k} \in T_{x_{k}} \mathcal{M}$.

- Search along a curve in \mathcal{M} whose tangent vector at $t=0$ is η_{k}.
\leadsto Retraction.

Retractions

- Move in the direction of ξ while remaining constrained to \mathcal{M}.
\triangleright Smooth mapping $R_{x}: T_{x} \mathcal{M} \rightarrow \mathcal{M}$ with a local condition that preserves gradients at x.

- The Riemannian exponential mapping is also a retraction, but it is not computationally efficient.
- Retractions: first-order approximation of the Riemannian exponential!

Retractions on embedded submanifolds

Let \mathcal{M} be an embedded submanifold of a vector space \mathcal{E}. Thus $T_{x} \mathcal{M}$ is a linear subspace of $T_{x} \mathcal{E} \simeq \mathcal{E}$. Since $x \in \mathcal{M} \subseteq \mathcal{E}$ and $\xi \in T_{x} \mathcal{M} \subseteq T_{x} \mathcal{E} \simeq \mathcal{E}$, with little abuse of notation we write $x+\xi \in \mathcal{E}$.
\leadsto General recipe to define a retraction $R_{x}(\xi)$ for embedded submanifolds:

- Move along ξ to get to $x+\xi$ in \mathcal{E}.
- Map $x+\xi$ back to \mathcal{M}. For matrix manifolds, use matrix decompositions.

Example. Let $\mathcal{M}=S^{n-1}$, then the retraction at $x \in S^{n-1}$ is

$$
R_{x}(\xi)=\frac{x+\xi}{\|x+\xi\|}
$$

defined for all $\xi \in T_{x} S^{n-1} . R_{x}(\xi)$ is the point on S^{n-1} that minimizes the distance to $x+\xi$.

Retractions on the Stiefel manifold

\leadsto Based on matrix decompositions: given a generic matrix $A \in \mathbb{R}_{*}^{n \times p}$,
$>$ Polar decomposition (\sim polar form of a complex number):

$$
A=U P, \quad \text { with } \quad U \in \operatorname{St}(n, p), \quad P \in \mathcal{S}_{\text {sym }^{+}}(p)
$$

$>$ QR factorization (\sim Gram-Schmidt algorithm):

$$
A=Q R, \quad \text { with } \quad Q \in \operatorname{St}(n, p), \quad R \in \mathcal{S}_{\mathrm{upp}^{+}}(p)
$$

Let $X \in \operatorname{St}(n, p)$ and $\xi \in T_{X} \operatorname{St}(n, p)$.
\leadsto Retraction based on the polar decomposition:

$$
R_{X}(\xi)=(X+\xi)\left(I+\xi^{\top} \xi\right)^{-1 / 2}
$$

\leadsto Retraction based on the QR factorization:

$$
R_{X}(\xi)=\mathrm{qf}(X+\xi)
$$

where $\mathrm{qf}(A)$ denotes the Q factor of the QR factorization.

Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

$$
x_{k+1}=R_{x_{k}}\left(t_{k} \eta_{k}\right),
$$

where $t_{k} \in \mathbb{R}$ and $\eta_{k} \in T_{x_{k}} \mathcal{M}$.
Recipe for constructing the steepest descent method on a manifold:

- Choose a retraction R.
- Select a search direction η_{k}.
- Select a step length t_{k}.

Rayleigh quotient on the sphere/1

- Compute a dominant eigenvector of a symmetric matrix $A \in \mathbb{R}^{n \times n}$.
$>$ Let λ_{1} be the largest eigenvalue of A, and v_{1} the associated normalized eigenvector, i.e.,

$$
A v_{1}=\lambda_{1} v_{1}
$$

Then λ_{1} is a maximum value of $f: S^{n-1} \rightarrow \mathbb{R}$, defined by $x \mapsto x^{\top} A x$.
$>$ We can state the optimization problem as

$$
\min _{x \in \mathcal{S}^{n-1}}-x^{\top} A x
$$

where $\mathcal{S}^{n-1}=\left\{x \in \mathbb{R}^{n}:\|x\|=1\right\}$ is the unit $(n-1)$-sphere.

- Euclidean gradient: $\nabla f(x)=-2 A x$.
- The global maximizers of the Rayleigh quotient are $\pm v_{1}$.

Rayleigh quotient on the sphere/2

- MATLAB toolbox Manopt.

R Riemannian SD using standard line search with Armijo condition.
1

```
% Generate random problem data.
n = 1000;
A = randn(n);
A = .5* (A+A.');
% Create the problem structure.
manifold = spherefactory(n);
problem.M = manifold;
% Define the problem cost function and its Euclidean gradient.
problem.cost = @(x) -x'* (A*x);
problem.egrad = @(x) -2*A*x;
options.maxiter = 400;
% Solve.
[ x, xcost, info, ~ ] = steepestdescent( problem, [], options );
```


Rayleigh quotient on the sphere $/ 3$

- Convergence behavior of steepest descent when applied to the Rayleigh quotient on the sphere. The cost function value at the k th iteration is denoted by f_{k}, the optimal cost value is f^{*}, and the Riemannian gradient is denoted by g_{k}.

Brockett cost function on the Stiefel manifold/1

- Cost function defined as a weighted sum $\sum_{i} \mu_{i} x_{(i)}^{\top} A x_{(i)}$ of Rayleigh quotients on the sphere under the orthogonality constraint $x_{(i)}^{\top} x_{(j)}=\delta_{i j}$.
- Matrix form

$$
f: \operatorname{St}(n, p) \rightarrow \mathbb{R}: X \mapsto \operatorname{trace}\left(X^{\top} A X N\right),
$$

where $A \in \mathbb{R}^{n \times n}$ is symmetric and $N=\operatorname{diag}\left(\mu_{1}, \ldots, \mu_{p}\right)$, with $0<\mu_{1}<\ldots<\mu_{p}$.

- We can state the optimization problem as

$$
\min _{X \in \mathrm{St}(n, p)} \operatorname{trace}\left(X^{\top} A X N\right) .
$$

- Euclidean gradient: $\nabla f(X)=2 A X N$.

Brockett cost function on the Stiefel manifold/2

```
1 % Generate random problem data.
n = 10;
p = 3;
A = randn(n);
A = . 5* (A+A.');
% The matrix containing the weights (sorted in ascending order)
N = diag(sort (abs(randn(p,1))));
% Create the problem structure.
manifold = stiefelfactory(n,p);
problem.M = manifold;
% Define the problem cost function and its Euclidean gradient.
problem.cost = @(X) trace(X'* A* X*N);
problem.egrad = @(X) 2*A*X*N;
options.maxiter = 400;
% Solve.
[ x, xcost, info, ~ ] = steepestdescent( problem, [], options );
```


Brockett cost function on the Stiefel manifold/3

- Convergence behavior of steepest descent when applied to the Brockett cost function on the Stiefel manifold. The cost function value at the k th iteration is denoted by f_{k}, the optimal cost value is f^{*}, and the Riemannian gradient is denoted by g_{k}.

III. Riemannian multilevel optimization

Overview

- New algorithm to solve large-scale optimization problems.
- Minimize a cost function on the Riemannian manifold of fixed-rank matrices using a multigrid idea.
- Low-rank format for efficient implementation.
- Multilevel idea of Multigrid Line-Search (MGLS) [Wen/Goldfarb 2009].
\leadsto Riemannian Multigrid Line Search (RMGLS).
https://doi.org/10.1137/20M1337430
MATLAB code available: https://doi.org/10/ghp6ng

The manifold of fixed-rank matrices

- Our optimization problem is defined over

$$
\mathcal{M}_{k}=\left\{X \in \mathbb{R}^{m \times n}: \operatorname{rank}(X)=k\right\} .
$$

- Like $\operatorname{St}(n, p), \mathcal{M}_{k}$ also has a smooth structure ...
2×2 example:

$$
X=\left[\begin{array}{ll}
x & y \\
y & z
\end{array}\right]
$$

Parametrization:
$\operatorname{rank}(X)=1 \Leftrightarrow x z=y^{2}$ and $x, z \neq 0$.

Theorem: \mathcal{M}_{k} is a smooth Riemannian submanifold embedded in $\mathbb{R}^{m \times n}$ of dimension $k(m+n-k)$.

Alternative characterization, tangent vectors

- Using the SVD, one has the equivalent characterization

$$
\mathcal{M}_{k}=\left\{U \Sigma V^{\top}: U^{\top} U=I_{k}, V^{\top} V=I_{k}, \Sigma=\operatorname{diag}\left(\sigma_{i}\right), \sigma_{1} \geqslant \cdots \geqslant \sigma_{k}>0\right\} .
$$

- A tangent vector ξ at $X=U \Sigma V^{\top}$ is represented as

$$
\xi=U M V^{\top}+U_{p} V^{\top}+U V_{p}^{\top}
$$

$M \in \mathbb{R}^{k \times k}, \quad U_{p} \in \mathbb{R}^{m \times k}, \quad U_{p}^{\top} U=0, \quad V_{p} \in \mathbb{R}^{n \times k}, \quad V_{p}^{\top} V=0$.

Metric, projection, gradient

- The Riemannian metric is

$$
g_{X}(\xi, \eta)=\langle\xi, \eta\rangle=\operatorname{trace}\left(\xi^{\top} \eta\right), \quad \text { with } \quad X \in \mathcal{M}_{k} \quad \text { and } \quad \xi, \eta \in T_{X} \mathcal{M}_{k}
$$

where ξ, η are seen as matrices in the ambient space $\mathbb{R}^{m \times n}$.
$>$ Orthogonal projection onto the tangent space at X is

$$
\mathrm{P}_{T_{X} \mathcal{M}_{k}}: \mathbb{R}^{m \times n} \rightarrow T_{X} \mathcal{M}_{k}, \quad Z \rightarrow \mathrm{P}_{U} Z \mathrm{P}_{V}+\mathrm{P}_{U}^{\perp} Z \mathrm{P}_{V}+\mathrm{P}_{U} Z \mathrm{P}_{V}^{\perp}
$$

$>$ Riemannian gradient: projection onto $T_{X} \mathcal{M}_{k}$ of the Euclidean gradient

$$
\operatorname{grad} f(X)=\mathrm{P}_{T_{X} \mathcal{M}_{k}}(\nabla f(X))
$$

Retraction on the manifold of fixed-rank matrices

- Retraction $R_{X}: T_{X} \mathcal{M}_{k} \rightarrow \mathcal{M}_{k}$. Typical: truncated SVD.
- Alternative: Orthographic retraction. Given $X=U \Sigma V^{\top}$ and $\xi=U M V^{\top}+U_{p} V^{\top}+U V_{p}^{\top}$ with $U^{\top} U_{p}=0$ and $V^{\top} V_{p}=0$,

$$
R_{X}(\xi)=\left(U(\Sigma+M)+U_{p}\right)(\Sigma+M)^{-1}\left((\Sigma+M) V^{\top}+V_{p}^{\top}\right) .
$$

- Inverse orthographic retraction of Y at X :

$$
R_{X}^{-1}(Y)=\mathrm{P}_{T_{X} \mathcal{M}_{k}}(Y-X) .
$$

Multilevel optimization in Euclidean space

- Multigrid idea for solving A on several fine and coarse grids.
- Fine grid $\cdot h$ smooths the error (with cheap algorithm). Coarse grid $\cdot H$ computes smooth correction (by recursion). Transfer operators I_{h}^{H} and I_{H}^{h} between grids (by interpolation).

Multigrid: [Hackbusch 1985, Brandt et al. 1985], ...
Multilevel optimization: [Nash 2000, Lewis/Nash 2005, Wen/Goldfarb 2009], ...

Generalization to Riemannian manifolds

Our contribution: extend to manifolds.

\leadsto Riemannian Multigrid Line-Search (RMGLS).
谢谢!
IV. Bonus material

Armijo backtracking example

Armijo backtracking example

Armijo backtracking example

Backtracking line search

Armijo backtracking example

Backtracking line search

Armijo backtracking example

Backtracking line search

Stiefel manifold, special case of the orthogonal group

If $p=n$, then the Stiefel manifold reduces to the orthogonal group

$$
O_{n}=\left\{X \in \mathbb{R}^{n \times n}: X^{\top} X=I_{n}\right\},
$$

and the tangent space at X is given by

$$
T_{X} O_{n}=\left\{X \Omega: \Omega^{\top}=-\Omega\right\}=X \mathcal{S}_{\text {skew }}(n) .
$$

In particular, if $X=I_{n}$, we have $T_{I_{n}} O_{n}=\mathcal{S}_{\text {skew }}(n)$. This means that the tangent space to O_{n} at the identity matrix I_{n} is the set of skew-symmetric n-by- n matrices $\mathcal{S}_{\text {skew }}(n)$. In the language of Lie groups, we say that $\mathcal{S}_{\text {skew }}(n)$ is the Lie algebra of the Lie group O_{n}.

Retractions

Properties:

(i) $R_{x}\left(0_{x}\right)=x$, where 0_{x} is the zero element of $T_{x} \mathcal{M}$.
(ii) With the identification
$T_{0_{x}} T_{x} \mathcal{M} \simeq T_{x} \mathcal{M}$, the retraction R_{x} satisfies the local rigidity condition

$$
\mathrm{DR}_{x}\left(0_{x}\right)=\mathrm{id}_{T_{x} \mathcal{M}}
$$

Two main purposes:

$>$ Turn points of $T_{x} \mathcal{M}$ into points of \mathcal{M}.
Transform cost functions defined in a neighborhood of $x \in \mathcal{M}$ into cost functions defined on the vector space $T_{x} \mathcal{M}$.

Coarse-grid correction

MG/Opt: for fixed $x_{H}^{(i)}$, minimize for e_{H} the coarse-grid objective

$$
\psi_{H}\left(x_{H}^{(i)}+e_{H}\right):=f_{H}\left(x_{H}^{(i)}+e_{H}\right)-\left\langle x_{H}^{(i)}+e_{H}, \nabla f_{H}\left(x_{H}^{(i)}\right)-I_{h}^{H} \nabla f_{h}\left(\bar{x}_{h}\right)\right\rangle .
$$

- To extend to manifolds, we interpret e_{H} as a tangent vector, + as retraction, and $\langle\cdot, \cdot\rangle$ as Riemannian metric.
- The linear modification of the coarse-grid cost function:

$$
\widehat{\psi}_{x_{H}^{(i)}}: T_{x_{H}^{(i)}} \mathcal{M}_{H} \rightarrow \mathbb{R},
$$

defined by

$$
\widehat{\psi}_{x_{H}^{(i)}}\left(\eta_{H}\right):=f_{H}\left(R_{x_{H}^{(i)}}\left(\eta_{H}\right)\right)-g_{x_{H}^{(i)}}\left(\eta_{H}, \kappa_{H}\right),
$$

with retraction $R_{x_{H}^{(i)}}$, Riemannian metric $g_{x_{H}^{(i)}}$ and

$$
\kappa_{H}=\operatorname{grad} f_{H}\left(x_{H}^{(i)}\right)-\widetilde{\mathcal{I}}_{h}^{H}\left(\operatorname{grad} f_{h}\left(\bar{x}_{h}\right)\right) \in T_{x_{H}^{(i)}} \mathcal{M}_{H} .
$$

Smoothers

- Many options for smoothers, but they need to be compatible with optimization, like SD or L-BFGS.
- Point smoother, but also line smoothers are possible using cheap preconditioning or quasi-Newton.
\downarrow We take half the step size in steepest descent. Similar to Jacobi iteration as smoother.
- For isotropic problems, a small number (5) of steepest descent steps for Riemannian manifolds suffices.

Lyapunov equation - problem statement

- Consider the minimization problem

$$
\left\{\begin{aligned}
& \min _{w} \mathcal{F}(w(x, y))=\int_{\Omega} \frac{1}{2}\|\nabla w(x, y)\|^{2}-\gamma(x, y) w(x, y) \mathrm{d} x \mathrm{~d} y \\
& \text { such that } \quad w=0 \text { on } \partial \Omega,
\end{aligned}\right.
$$

where $\Omega=[0,1] \times[0,1]$ and $\gamma=0$ on $\partial \Omega$.

- The variational derivative (Euclidean gradient) of \mathcal{F} is

$$
\frac{\delta \mathcal{F}}{\delta w}=-\Delta w-\gamma .
$$

- Discretization gives the LHS of a Lyapunov equation

$$
A_{h} W_{h}+W_{h} A_{h}-\Gamma_{h},
$$

where A_{h} is the discretized minus Laplacian.

- Linear problem, but typical problem for which low-rank methods work very well [Grasedyck 2004, Sabino 2006, Simoncini 2016]:

$$
r=O\left(\operatorname{rank}\left(\Gamma_{h}\right) \log (1 / \varepsilon) \log \kappa\left(A_{h}\right)\right) .
$$

Lyapunov - typical convergence

Example: V-cycle, finest level = 8 (about 250000 gridpoints), coarsest level $=2$, rank $=5$, number of smoothing steps $=5$.

Lyapunov - dependence on mesh

- V-cycle, coarsest level $=2$.
- The sizes of the discretizations are 16384 () , 65536 (॰), 262144 (॰) and 1048576 (○).
rank $k=5$

$\operatorname{rank} k=10$

Nonlinear PDE - problem statement

- Nonlinear PDE

$$
\left\{\begin{array}{l}
-\Delta w+\lambda w(w+1)-\gamma=0 \quad \text { in } \Omega \\
w=0 \text { on } \partial \Omega
\end{array}\right.
$$

- Prescribe as exact solution (numerical rank 9):

$$
w_{\mathrm{ex}}=\frac{1}{10} \sin \left(4 \pi^{2}\left(x^{2}-x\right)\left(y^{2}-y\right)\right) .
$$

- We get the term

$$
\gamma=-\Delta w_{\mathrm{ex}}+\lambda w_{\mathrm{ex}}\left(w_{\mathrm{ex}}+1\right) .
$$

- Obtain the variational problem

$$
\left\{\begin{array}{l}
\min _{w} \mathcal{F}(w)=\int_{\Omega} \frac{1}{2}\|\nabla w\|^{2}+\lambda w^{2}\left(\frac{1}{3} w+\frac{1}{2}\right)-\gamma w \mathrm{~d} x \mathrm{~d} y \\
\text { such that } w=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Nonlinear PDE - similar numerical experiment

Mesh-independent convergence

Error err-W with $\ell=8$

Gradient R-grad with $k=5$

Nonlinear PDE - Rank truncated Euclidean MG

Rank-truncated Euclidean multigrid (EMG) vs RMGLS for different ranks.
In both cases, 8 smoothing steps and coarsest level 7 are used.

	level	size	EMG		RMGLS				
			time (s)	$r\left(W_{h}^{(\mathrm{end})}\right)$	time (s)	$\left\\|\xi_{h}^{(\mathrm{end})}\right\\|_{F}$	$r\left(W_{h}^{(\mathrm{end})}\right)$		
\bigcirc	9	262144	30	4.7324×10^{-7}	21	7.8437×10^{-13}	3.7321×10^{-7}		
है	10	1048576	123	3.4975×10^{-7}	61	4.0398×10^{-13}	1.8660×10^{-7}		
\#	11	4194304	797	1.2826×10^{-5}	153	5.5800×10^{-13}	9.3301×10^{-8}		
10	9	262144	107	7.4928×10^{-10}	92	2.0183×10^{-13}	4.2886×10^{-10}		
है	10	1048576	380	9.6225×10^{-10}	207	6.5306×10^{-13}	2.6044×10^{-10}		
ๆ	11	4194304	3113	4.3682×10^{-10}	532	1.3610×10^{-13}	8.3563×10^{-11}		

