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Overview

▶ Numerical algorithms on matrix
manifolds.

▶ Exploit geometric structure, take into
account the constraints.

TxkM

M

tkηk
xk

xk+1 = Rxk
(tkηk)

Talk:

▶ Numerical optimization in R
n (steepest descent method).

▶ Numerical optimization on matrix manifolds, fundamental ideas and tools.

▶ Riemannian multilevel optimization on the manifold of fixed-rank matrices.
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I. Numerical optimization in R
n



Steepest descent (SD)/1

▶ Steepest descent method (最陡下降法),
gradient descent (梯度下降法), gradient
method, . . .

▶ First-order method: it only uses
information on the function values and
its derivatives.

▶ SD has many variants: projected,
accelerated, conjugate, coordinatewise,
stochastic...

Steepest descent: [Cauchy 1847, Hadamard 1907], . . .
Numerical optimization: [Nesterov 2004, Nocedal/Wright 2006], . . .

4 / 33



Steepest descent (SD)/2

▶ Consider the specific case of unconstrained optimization problem, i.e.,

min
x∈Rn

f (x),

where f (x) may (or may not) have certain properties (e.g., convexity).

▶ Many optimization methods (like SD) are of the form

xk+1 = xk + tkηk ,

where tk > 0 is the step size and ηk ∈Rn is the search direction.

▶ Descent type: f (xk+1) < f (xk).

{ How to choose ηk?

▶ Steepest descent direction: ηk = −∇f (x).
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Line-search (LS) method

{ How to calculate tk?

▶ Exact line search (LS):
min
t≥0

f (xk + tηk)

▶ tEXk is the unique minimizer if f is strictly convex.

▶ Can sometimes be computed. Good for theory.

▶ In practice, for generic f , we do not use exact LS. Replace exact LS with
something computationally cheaper, but still effective.

{ Armijo line-search (also known as Armijo backtracking, Armijo
condition, sufficient decrease condition...).

Armijo line-search technique: [Armijo 1966]
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Steepest descent on a quadratic cost function/1

min
x∈R2

f (x), f (x) =
1
2
xTAx, A =

[
40 0
0 40

]
.

replay replay
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Steepest descent on a quadratic cost function/2

min
x∈R2

f (x), f (x) =
1
2
xTAx, A =

[
60 −15
−15 10

]
.

replay replay
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II. Optimization on matrix manifolds



Matrix manifolds

▶ Matrix manifold: any manifold that is constructed from R
n×p by taking

either embedded submanifolds or quotient manifolds.

▶ Examples of embedded submanifolds: orthogonal Stiefel manifold, oblique
manifold, manifold of symplectic matrices, manifold of fixed-rank matrices
(later), . . .

▶ Example of quotient manifold: the Grassmann manifold (not in this talk).

Manifold optimization: [Edelman et al. 1998, Absil et al. 2008, Boumal 2022], . . .
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The Stiefel manifold/1

▶ Set of matrices with orthonormal columns:

St(n,p) = {X ∈Rn×p : X⊤X = Ip}.

▶ Tangent space toM at x: set of all tangent
vectors toM at x, denoted TxM. For St(n,p),

TXSt(n,p) = {Z ∈Rn×p : XTZ +ZTX = 0}.

TXSt(n, p)

St(n, p)

Z

X

Eduard L. Stiefel (1909 – 1978)

Stiefel manifold: [Stiefel, 1935]
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The Stiefel manifold/2

TXSt(n, p)

St(n, p)

Z

X

▶ Alternative characterization:

TXSt(n,p) = {XΩ +X⊥K : Ω = −ΩT, K ∈R(n−p)×p}.

▶ Dimension: since dim
(
St(n,p)

)
= dim

(
TXSt(n,p)

)
, the dimension of the

Stiefel manifold is

dim(St(n,p)) = dim(Sskew) + dim(R(n−p)×p) = np − 1
2p(p+1).
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Riemannian manifold

A manifoldM endowed with a smoothly-varying inner product (called
Riemannian metric g) is called Riemannian manifold.

{ A couple (M, g), i.e., a manifold with a Riemannian metric on it.

{ For the Stiefel manifold:

▶ Embedded metric (inherited by TXSt(n,p) from the embedding space Rn×p)

⟨ξ,η⟩X = trace(ξTη), ξ, η ∈ TXSt(n,p).

▶ Canonical metric

gc(ξ,η) = trace(ξ⊤(I − 1
2XX

⊤)η), ξ, η ∈ TXSt(n,p).

▶ Projection onto the tangent space

PTXSt(n,p) ξ = Xskew(XTξ) + (I −XXT)ξ.
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Riemannian gradient

{ For any embedded submanifold:

▶ Riemannian gradient: projection onto TXM of the Euclidean gradient

gradf (X) = PTXM(∇f (X)).

{ Recall: for the Stiefel manifold, the projection onto the tangent space is

PTXSt(n,p)ξ = Xskew(XTξ) + (I −XXT)ξ.

{ ∇f (X) is the Euclidean gradient of f (X). For example, for f (x) = xTAx, one
has ∇f (x) = 2Ax.

Matrix and vector calculus: The Matrix Cookbook, www.matrixcalculus.org, . . .
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Steepest descent on a manifold

▶ Recall: Steepest descent in R
n is based on the update formula

xk+1 = xk + tkηk ,

where tk ∈R is the step size and ηk ∈Rn is the search direction.

{ On nonlinear manifolds:

▶ ηk will be a tangent vector toM at xk , i.e., ηk ∈ TxkM.

▶ Search along a curve inM whose tangent vector at t = 0 is ηk .

{ Retraction.

TxkM

M

tkηk
xk

xk+1 = Rxk
(tkηk)
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Retractions

▶ Move in the direction of ξ while remaining constrained toM.

▶ Smooth mapping Rx : TxM→M with a local condition that preserves
gradients at x.

TxM

M

ξ

x

Rx(ξ)

▶ The Riemannian exponential mapping is also a retraction, but it is not
computationally efficient.

▶ Retractions: first-order approximation of the Riemannian exponential!

Retractions: [Absil/Malick 2012]
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Retractions on embedded submanifolds

LetM be an embedded submanifold of a vector space E . Thus TxM is a linear
subspace of TxE ≃ E . Since x ∈M⊆ E and ξ ∈ TxM⊆ TxE ≃ E , with little abuse
of notation we write x+ ξ ∈ E .

{ General recipe to define a retraction Rx(ξ) for embedded submanifolds:

▶ Move along ξ to get to x+ ξ in E .
▶ Map x+ ξ back toM. For matrix manifolds, use matrix decompositions.

Example. LetM = Sn−1, then the
retraction at x ∈ Sn−1 is

Rx(ξ) =
x+ ξ
∥x+ ξ∥

,

defined for all ξ ∈ TxSn−1. Rx(ξ) is
the point on Sn−1 that minimizes the
distance to x+ ξ .

y = Rx(ξ)

TxS
2

S2

ξx
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Retractions on the Stiefel manifold
{ Based on matrix decompositions: given a generic matrix A ∈Rn×p∗ ,

▶ Polar decomposition (∼ polar form of a complex number):

A =UP , with U ∈ St(n,p), P ∈ Ssym+(p).

▶ QR factorization (∼ Gram–Schmidt algorithm):

A =QR, with Q ∈ St(n,p), R ∈ Supp+(p).

Let X ∈ St(n,p) and ξ ∈ TXSt(n,p).

{ Retraction based on the polar decomposition:

RX(ξ) = (X + ξ) (I + ξTξ)−1/2.

{ Retraction based on the QR factorization:

RX(ξ) = qf(X + ξ),

where qf(A) denotes the Q factor of the QR factorization.
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Steepest descent on a manifold (reprise)

Steepest descent on manifolds is based on the update formula

xk+1 = Rxk (tkηk),

where tk ∈R and ηk ∈ TxkM.

Recipe for constructing the steepest descent method on a manifold:

▶ Choose a retraction R.

▶ Select a search direction ηk .

▶ Select a step length tk .

TxkM

M

tkηk
xk

xk+1 = Rxk
(tkηk)
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Rayleigh quotient on the sphere/1

▶ Compute a dominant eigenvector of a symmetric matrix A ∈Rn×n.
▶ Let λ1 be the largest eigenvalue of A, and v1 the associated normalized

eigenvector, i.e.,
Av1 = λ1v1.

▶ Then λ1 is a maximum value of f : Sn−1→R, defined by x 7→ xTAx.

▶ We can state the optimization problem as

min
x∈Sn−1

−xTAx,

where Sn−1 = {x ∈Rn : ∥x∥ = 1} is the unit (n− 1)-sphere.

▶ Euclidean gradient: ∇f (x) = −2Ax.
▶ The global maximizers of the Rayleigh quotient are ±v1.

Rayleigh quotient on the sphere: [Absil/Mahony/Sepulchre 2008], . . .
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Rayleigh quotient on the sphere/2

▶ MATLAB toolbox Manopt.

▶ Riemannian SD using standard line search with Armijo condition.
1 % Generate random problem data.

n = 1000;
3 A = randn(n);

A = .5*(A+A.’);
5

% Create the problem structure.
7 manifold = spherefactory(n);

problem.M = manifold;
9

% Define the problem cost function and its Euclidean gradient.
11 problem.cost = @(x) -x’*(A*x);

problem.egrad = @(x) -2*A*x;
13

options.maxiter = 400;
15

% Solve.
17 [ x, xcost, info, ~ ] = steepestdescent( problem, [], options );

Manopt: [Boumal/Mishra/Absil/Sepulchre 2014], www.manopt.org
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Rayleigh quotient on the sphere/3

▶ Convergence behavior of steepest descent when applied to the Rayleigh quotient on
the sphere. The cost function value at the kth iteration is denoted by fk , the optimal
cost value is f ∗, and the Riemannian gradient is denoted by gk .

More accurate line-search technique: [Hager/Zhang 2005–2006], [S./Vandereycken 2021]
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Brockett cost function on the Stiefel manifold/1

▶ Cost function defined as a weighted sum
∑
i µix

T
(i)Ax(i) of Rayleigh quotients

on the sphere under the orthogonality constraint xT(i)x(j) = δij .

▶ Matrix form
f : St(n,p)→R : X 7→ trace(XTAXN ),

where A ∈Rn×n is symmetric and N = diag(µ1, . . . ,µp), with
0 < µ1 < . . . < µp.

▶ We can state the optimization problem as

min
X∈St(n,p)

trace(XTAXN ).

▶ Euclidean gradient: ∇f (X) = 2AXN .

Brockett cost function: [Brockett 1993]
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Brockett cost function on the Stiefel manifold/2

1 % Generate random problem data.
n = 10;

3 p = 3;
A = randn(n);

5 A = .5*(A+A.’);

7 % The matrix containing the weights (sorted in ascending order)
N = diag(sort(abs(randn(p,1))));

9
% Create the problem structure.

11 manifold = stiefelfactory(n,p);
problem.M = manifold;

13
% Define the problem cost function and its Euclidean gradient.

15 problem.cost = @(X) trace(X’*A*X*N);
problem.egrad = @(X) 2*A*X*N;

17
options.maxiter = 400;

19
% Solve.

21 [ x, xcost, info, ~ ] = steepestdescent( problem, [], options );

Manopt: [Boumal/Mishra/Absil/Sepulchre 2014], www.manopt.org
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Brockett cost function on the Stiefel manifold/3

▶ Convergence behavior of steepest descent when applied to the Brockett cost function
on the Stiefel manifold. The cost function value at the kth iteration is denoted by fk ,
the optimal cost value is f ∗, and the Riemannian gradient is denoted by gk .
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III. Riemannian multilevel optimization



Overview

▶ New algorithm to solve large-scale optimization problems.

▶ Minimize a cost function on the Riemannian manifold of fixed-rank matrices
using a multigrid idea.

▶ Low-rank format for efficient implementation.

▶ Multilevel idea of Multigrid Line-Search (MGLS) [Wen/Goldfarb 2009].

{ Riemannian Multigrid Line Search (RMGLS).
https://doi.org/10.1137/20M1337430

MATLAB code available: https://doi.org/10/ghp6ng

Riemannian Multigrid Line-Search (RMGLS): [S./Vandereycken 2021]
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The manifold of fixed-rank matrices

▶ Our optimization problem is defined over

Mk = {X ∈Rm×n : rank(X) = k}.

▶ Like St(n,p),Mk also has a smooth structure . . .

2× 2 example:

X =
[
x y
y z

]
.

Parametrization:
rank(X) = 1⇔ xz = y2 and x,z , 0.

Theorem:Mk is a smooth Riemannian submanifold embedded in R
m×n of

dimension k(m+n− k).

Optimizing on submanifoldMk : [Vandereycken 2010]
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Alternative characterization, tangent vectors

▶ Using the SVD, one has the equivalent characterization

Mk = {UΣV T : UTU = Ik , V
TV = Ik , Σ = diag(σi), σ1 ⩾ · · · ⩾ σk > 0}.

Σ

U

V
T

n× k k × k k × n

X



▶ A tangent vector ξ at X =UΣV T is represented as

ξ =UMV T +UpV
T +UV T

p ,

M ∈Rk×k , Up ∈Rm×k , UT
pU = 0, Vp ∈Rn×k , V T

p V = 0.
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Metric, projection, gradient

▶ The Riemannian metric is

gX(ξ,η) = ⟨ξ,η⟩ = trace(ξTη), with X ∈Mk and ξ,η ∈ TXMk ,

where ξ , η are seen as matrices in the ambient space Rm×n.

▶ Orthogonal projection onto the tangent space at X is

PTXMk
: Rm×n→ TXMk , Z→ PU ZPV +P⊥U ZPV +PU ZP⊥V .

▶ Riemannian gradient: projection onto TXMk of the Euclidean gradient

gradf (X) = PTXMk
(∇f (X)).
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Retraction on the manifold of fixed-rank matrices

▶ Retraction RX : TXMk →Mk . Typical: truncated SVD.

▶ Alternative: Orthographic retraction. Given X =UΣV T and
ξ =UMV T +UpV T +UV T

p with UTUp = 0 and V TVp = 0,

RX(ξ) = (U (Σ +M) +Up)(Σ +M)−1((Σ +M)V T +V T
p ).

ξ

TXMk

X

Mk
Y = RX(ξ)

▶ Inverse orthographic retraction of Y at X:

R−1X (Y ) = PTXMk
(Y −X).

Many retractions: [Absil/Malick 2012, Absil/Oseledets 2015]
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Multilevel optimization in Euclidean space
▶ Multigrid idea for solving A on several fine and coarse grids.

▶ Fine grid ·h smooths the error (with cheap algorithm). Coarse grid ·H
computes smooth correction (by recursion). Transfer operators IHh and IhH
between grids (by interpolation).

recursive cycling

IH
h

Ih
H

Ωh

ΩH

min
xh∈Ωh

fh(xh)

min
xH∈ΩH

ψH(xH)

x
(i+1)
h

ph x̄h
p̂hx̂heh

eH

x
(i)
h

x
(i+1)
H

x
(i)
H

Multigrid: [Hackbusch 1985, Brandt et al. 1985], . . .
Multilevel optimization: [Nash 2000, Lewis/Nash 2005, Wen/Goldfarb 2009], . . .
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Generalization to Riemannian manifolds
Our contribution: extend to manifolds.

MH

Mh

LS

Rx̄h

˜Ih

H

LS

ηh

ηH
R−1

x
(i)
H

IH

h

recursive cycling

min
xh∈Mh

fh(xh)

min
xH∈MH

ψH(xH)

x
(i+1)
h

x̂h

p̂h
x̄h

ph

x
(i)
h

x
(i)
H

pH
x̄H x

(i+1)
H

p̂HRx̄H

x̂H

{ Riemannian Multigrid Line-Search (RMGLS).

謝謝！
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IV. Bonus material



Armijo backtracking example



Armijo backtracking example



Armijo backtracking example



Armijo backtracking example



Armijo backtracking example



Stiefel manifold, special case of the orthogonal group

If p = n, then the Stiefel manifold reduces to the orthogonal group

On = {X ∈Rn×n : XTX = In},

and the tangent space at X is given by

TXOn = {XΩ : ΩT = −Ω} = XSskew(n).

In particular, if X = In, we have TInOn = Sskew(n). This means that the tangent
space to On at the identity matrix In is the set of skew-symmetric n-by-n matrices
Sskew(n). In the language of Lie groups, we say that Sskew(n) is the Lie algebra of
the Lie group On.



Retractions

Properties:
(i) Rx(0x) = x, where 0x is the zero

element of TxM.
(ii) With the identification

T0xTxM≃ TxM, the retraction
Rx satisfies the local rigidity
condition

DRx(0x) = idTxM.

TxM

M

ξ

x

Rx(ξ)

Two main purposes:

▶ Turn points of TxM into points ofM.

▶ Transform cost functions defined in a neighborhood of x ∈M into cost
functions defined on the vector space TxM.



Coarse-grid correction

MG/Opt: for fixed x(i)H , minimize for eH the coarse-grid objective

ψH (x
(i)
H + eH )B fH (x

(i)
H + eH )−⟨x(i)H + eH , ∇fH (x

(i)
H )− IHh ∇fh(x̄h)⟩.

▶ To extend to manifolds, we interpret eH as a tangent vector, + as retraction,
and ⟨·, ·⟩ as Riemannian metric.

▶ The linear modification of the coarse-grid cost function:

ψ̂
x
(i)
H
: T

x
(i)
H
MH →R,

defined by
ψ̂
x
(i)
H
(ηH )B fH (Rx(i)H

(ηH ))−g
x
(i)
H
(ηH ,κH),

with retraction R
x
(i)
H
, Riemannian metric g

x
(i)
H
and

κH = gradfH (x
(i)
H )− ĨHh (gradfh(x̄h)) ∈ Tx(i)H

MH .



Smoothers

▶ Many options for smoothers, but they need to be compatible with
optimization, like SD or L-BFGS.

▶ Point smoother, but also line smoothers are possible using cheap
preconditioning or quasi-Newton.

▶ We take half the step size in steepest descent. Similar to Jacobi iteration as
smoother.

▶ For isotropic problems, a small number (5) of steepest descent steps for
Riemannian manifolds suffices.



Lyapunov equation – problem statement
▶ Consider the minimization problemmin

w
F (w(x,y)) =

∫
Ω

1
2∥∇w(x,y)∥

2 −γ(x,y)w(x,y)dxdy

such that w = 0 on ∂Ω,

whereΩ = [0,1]× [0,1] and γ = 0 on ∂Ω.

▶ The variational derivative (Euclidean gradient) of F is
δF
δw

= −∆w −γ.

▶ Discretization gives the LHS of a Lyapunov equation

AhWh +WhAh − Γh,

where Ah is the discretized minus Laplacian.

▶ Linear problem, but typical problem for which low-rank methods work very
well [Grasedyck 2004, Sabino 2006, Simoncini 2016]:

r =O(rank(Γh) log(1/ε) logκ(Ah)).



Lyapunov – typical convergence

Example: V-cycle, finest level = 8 (about 250000 gridpoints), coarsest level = 2,
rank = 5, number of smoothing steps = 5.



Lyapunov – dependence on mesh

▶ V-cycle, coarsest level = 2.

▶ The sizes of the discretizations are 16384 (•), 65536 (•), 262144 (•) and
1048576 (•).

rank k = 5 rank k = 10



Nonlinear PDE – problem statement
▶ Nonlinear PDE −∆w+λw(w+1)−γ = 0 inΩ,

w = 0 on ∂Ω.

▶ Prescribe as exact solution (numerical rank 9):

wex =
1
10 sin(4π

2(x2 − x)(y2 − y)).

▶ We get the term
γ = −∆wex +λwex(wex +1).

▶ Obtain the variational problemmin
w
F (w) =

∫
Ω

1
2∥∇w∥

2 +λw2
(
1
3w+ 1

2

)
−γwdxdy

such that w = 0 on ∂Ω.

Existing variational problem: [Henson 2003, Wen/Goldfarb 2009]



Nonlinear PDE – similar numerical experiment

Mesh-independent convergence

Error err-W with ℓ = 8 Gradient R-grad with k = 5



Nonlinear PDE – Rank truncated Euclidean MG

Rank-truncated Euclidean multigrid (EMG) vs RMGLS for different ranks.

In both cases, 8 smoothing steps and coarsest level 7 are used.

EMG RMGLS

level size time (s) r(W (end)
h ) time (s) ∥ξ(end)h ∥F r(W (end)

h )

ra
nk

10 9 262 144 30 4.7324× 10−7 21 7.8437× 10−13 3.7321× 10−7
10 1 048 576 123 3.4975× 10−7 61 4.0398× 10−13 1.8660× 10−7
11 4 194 304 797 1.2826× 10−5 153 5.5800× 10−13 9.3301× 10−8

ra
nk

15 9 262 144 107 7.4928× 10−10 92 2.0183× 10−13 4.2886× 10−10
10 1 048 576 380 9.6225× 10−10 207 6.5306× 10−13 2.6044× 10−10
11 4 194 304 3 113 4.3682× 10−10 532 1.3610× 10−13 8.3563× 10−11


