Computing geodesics on the Stiefel manifold

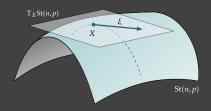
Marco Sutti

Postdoctoral fellow at NCTS

Taipei Postdoc Seminar October 12, 2022

Overview

 Several applications in optimization, statistics, image and signal processing deal with data belonging to the Stiefel manifold



- $St(n,p) = \{ X \in \mathbb{R}^{n \times p} : X^{\top}X = I_p \}.$
- ightharpoonup Evaluation of the distance between two points on St(n, p).
- ▶ No closed-form solution is known for St(n, p)!

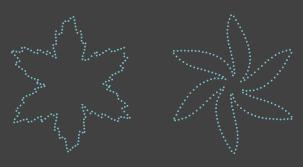
This talk

- I. Motivating example.
- II. Geometry of the Stiefel manifold.
- III. Computational framework based on the shooting method.
- IV. Some example applications.

I. Motivation

A motivating example: imaging/1

- ▶ Need to deal with transformations that are more complicated than similarity transformations (translation/rotation/scaling).
- ▶ E.g., distortion, or imaging the same scene from different viewing angles.
- **Example:** two shapes from the MPEG-7 dataset, with a certain degree of similarity.



→ How "far" are they from each other?

A motivating example: imaging/2

- ▶ One usually goes beyond the similarity group to define shape equivalences.
- ▶ Geodesics on St(n, 2), with shapes from the MPEG-7 dataset.

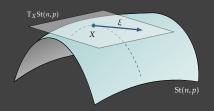
						<u>dist</u> .
23					RE	0.28
						1.23
					C.E.	
4						0.21

II. The Stiefel manifold

The Stiefel manifold and its tangent space

Set of matrices with orthonormal columns:

$$\operatorname{St}(n,p) = \{ X \in \mathbb{R}^{n \times p} : X^{\top}X = I_p \}.$$



▶ Tangent space to \mathcal{M} at x: set of all tangent vectors to \mathcal{M} at x, denoted $T_x\mathcal{M}$. For St(n, p),

$$T_X \mathrm{St}(n,p) = \{ \xi \in \mathbb{R}^{n \times p} \colon X^\top \xi + \xi^\top X = 0 \}.$$

ightharpoonup Alternative characterization of $T_X St(n, p)$:

$$T_X \operatorname{St}(n,p) = \{ X\Omega + X_{\perp} K \colon \Omega = -\Omega^{\top}, K \in \mathbb{R}^{(n-p) \times p} \},$$

where span
$$(X_{\perp}) = (\operatorname{span}(X))^{\perp}$$
.

Riemannian manifold

A manifold \mathcal{M} endowed with a smoothly-varying inner product (called Riemannian metric g) is called Riemannian manifold.

 \rightarrow A couple (\mathcal{M}, g) , i.e., a manifold with a Riemannian metric on it.

→ For the Stiefel manifold:

▶ Embedded metric inherited by $T_X St(n, p)$ from the embedding space $\mathbb{R}^{n \times p}$

$$\langle \xi, \eta \rangle = \operatorname{Tr}(\xi^{\top} \eta), \qquad \xi, \, \eta \in \operatorname{T}_X \operatorname{St}(n, p).$$

Canonical metric by seeing St(n, p) as a quotient of the orthogonal group O(n): St(n, p) = O(n)/O(n - p)

$$\langle \xi, \eta \rangle_{\mathbf{c}} = \operatorname{Tr}(\xi^{\top}(I - \frac{1}{2}XX^{\top})\eta), \qquad \xi, \eta \in T_X \operatorname{St}(n, p).$$

3 / 24

Metrics and geodesics on St(n, p)

Embedded metric:

Canonical metric

$$\langle \xi, \eta \rangle = \operatorname{Tr}(\xi^{\top} \eta).$$

$$\langle \xi, \eta \rangle_{\rm c} = {\rm Tr}(\xi^{\top} (I - \frac{1}{2} X X^{\top}) \eta).$$

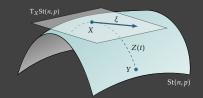
Length of a tangent vector $\xi = X\Omega + X_{\perp}K$:

$$\|\xi\|_{\mathrm{F}} = \sqrt{\langle \xi, \xi \rangle} = \sqrt{\|\Omega\|_{\mathrm{F}}^2 + \|K\|_{\mathrm{F}}^2}.$$

$$\|\xi\|_{c} = \sqrt{\langle \xi, \xi \rangle_{c}} = \sqrt{\frac{1}{2}} \|\Omega\|_{F}^{2} + \|K\|_{F}^{2}.$$

► Closed-form solution (with the canonical metric) for a geodesic Z(t) that realizes ξ with base point X:

$$Z(t) = \begin{bmatrix} X & X_{\perp} \end{bmatrix} \exp \begin{pmatrix} \begin{bmatrix} X^{\top} \xi & -(X_{\perp}^{\top} \xi)^{\top} \\ X_{\perp}^{\top} \xi & O \end{bmatrix} t \end{pmatrix} \begin{bmatrix} I_p \\ O \end{bmatrix}.$$



Riemannian exponential and logarithm

- Given $x \in \mathcal{M}$ and $\xi \in T_x \mathcal{M}$, the exponential mapping $\operatorname{Exp}_x : T_x \mathcal{M} \to \mathcal{M}$ s.t. $\operatorname{Exp}_x(\xi) := \gamma(1)$, with γ being the geodesic with $\gamma(0) = x$, $\dot{\gamma}(0) = \xi$.
- ▶ Corollary: $\operatorname{Exp}_{x}(t\xi) := \gamma(t)$, for $t \in [0,1]$.
- ▶ $\forall x, y \in \mathcal{M}$, the mapping $\operatorname{Exp}_{x}^{-1}(y) \in T_{x}\mathcal{M}$ is called logarithm mapping.

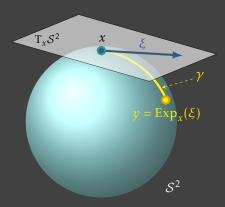
Example. Let $\mathcal{M} = \mathcal{S}^{n-1}$, then the exponential mapping at $x \in \mathcal{S}^{n-1}$ is

$$y = \text{Exp}_{x}(\xi) = x\cos(\|\xi\|) + \frac{\xi}{\|\xi\|}\sin(\|\xi\|),$$

and the Riemannian logarithm is

$$Log_{x}(y) = \xi = \arccos(x^{T}y) \frac{P_{x}y}{\|P_{x}y\|},$$

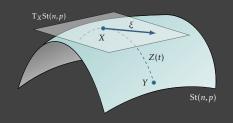
where $y \equiv \gamma(1)$ and P_x is the projector onto $(\operatorname{span}(x))^{\perp}$, i.e., $P_x = I - xx^{\top}$.



Riemannian distance on St(n, p)

▶ Property: Given $X, Y \in St(n,p)$, s.t. $Exp_X(\xi) = Y$, the Riemannian distance d(X,Y) equals the length of $\xi \equiv \dot{Z}(0) \in T_XSt(n,p)$:

$$d(X,Y) = \|\xi\|_{c} = \sqrt{\langle \xi, \xi \rangle_{c}}.$$



Equivalent to: Compute the length of the Riemannian logarithm of Y with base point X, i.e.,

$$Log_X(Y) = \xi$$
.

▶ No closed-form solution is known for St(n, p)!

 \rightarrow How do we compute d(X, Y) in practice / numerically?

Single shooting for BVPs

▶ Boundary value problem (BVP): Find w(x): $[a,b] \to \mathbb{R}$ that satisfies

$$w'' = f(x, w, w'),$$
 with BCs
$$\begin{cases} w(a) = \alpha, \\ w(b) = \beta. \end{cases}$$

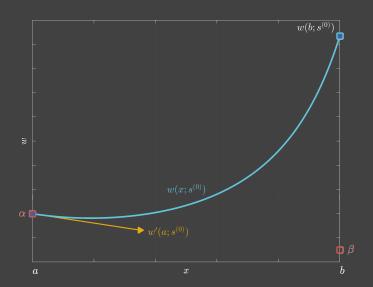
ightharpoonup Recast it as an initial value problem (IVP): Find w(x) that satisfies

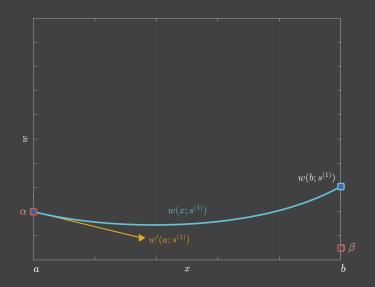
$$w'' = f(x, w, w'), \text{ with ICs } \begin{cases} w(a) = \alpha, \\ w'(a) = s. \end{cases}$$

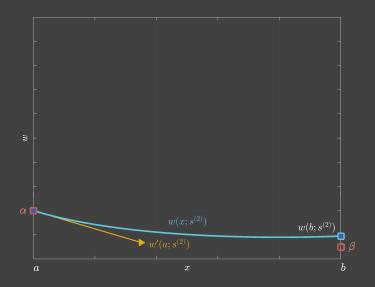
In general, this has a unique solution $w(x) \equiv w(x;s)$ which depends on s.

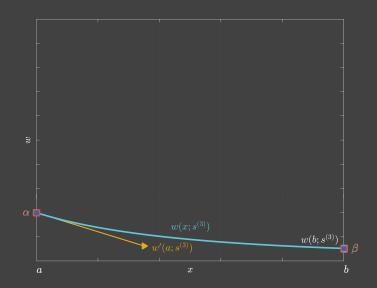
→ Single shooting method for BVPs:

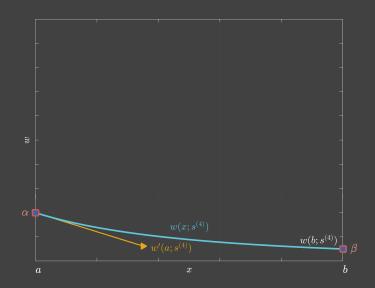
- ▶ Define $F(s) = w(b; s) \beta$.
- ▶ Find \bar{s} s.t. $F(\bar{s}) = 0$. Usually, with Newton's method.









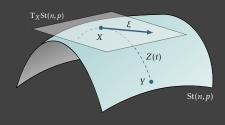


Stiefel geodesics via single shooting/1

Find
$$\xi \equiv \dot{Z}(0) \in T_X St(n, p)$$
 that satisfies the BVP

$$\ddot{Z} = -\dot{Z}\dot{Z}^{\top}Z - Z((Z^{\top}\dot{Z})^2 + \dot{Z}^{\top}\dot{Z}),$$

with BCs
$$\begin{cases} Z(0) = X, \\ Z(1) = Y. \end{cases}$$

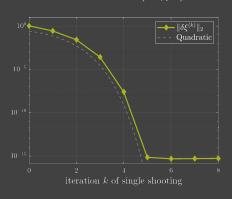


Recall: we have the explicit solution:
$$Z(t) = \begin{bmatrix} X & X_{\perp} \end{bmatrix} \exp \begin{pmatrix} \begin{bmatrix} X^{\top} \xi & -(X_{\perp}^{\top} \xi)^{\top} \\ X_{\perp}^{\top} \xi & O \end{bmatrix} t \begin{pmatrix} I_p \\ O \end{pmatrix}$$
.

- Define $F(\xi) = Z_{(t=1,\xi)} Y$.
- Find ξ s.t. $F(\xi) = 0$ with Newton's method.

Stiefel geodesics via single shooting/2

- Numerical experiment on St(15, 4).
- ▶ Monitored quantity: norm of the residual $\delta \xi^{(k)}$ of $F(\xi^{(k)}) = Z_{(t=1,\xi^{(k)})} Y$.
- Quadratic convergence.
- A good initial guess $\xi^{(0)}$ is needed.
 - ► Local problem (*X* and *Y* "close") can be solved very well by single shooting.
 - A variable step size might be used to make the shooting more robust.



Model order reduction/1

- ▶ Model order reduction (MOR) for dynamical systems parametrized according to $p = [p_1, ..., p_d]^{\mathsf{T}}$.
- ► For each parameter p_i in a set $\{p_1, p_2, ..., p_K\}$, use proper orthogonal decomposition (POD) to derive a reduced-order basis $V_i \in St(n, r)$, $r \ll n$.

$$\begin{cases} \dot{x}(t;p) = A(p)x(t;p) + B(p)u(t), \\ y(t;p) = C(p)x(t;p), \end{cases} \quad \begin{cases} \dot{x}_r(t;p) = A_r(p)x_r(t;p) + B_r(p)u(t), \\ y_r(t;p) = C_r(p)x_r(t;p), \end{cases}$$

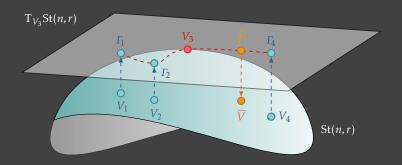
$$x(t;p) \in \mathbb{R}^n, \ u(t) \in \mathbb{R}^m, \ y(t) \in \mathbb{R}^q, \end{cases} \quad x_r = V^\top x, \ A_r = V^\top AV, \ B_r = V^\top B,$$

$$A(p) \in \mathbb{R}^{n \times n}, \ B(p) \in \mathbb{R}^{n \times m}, \ C(p) \in \mathbb{R}^{q \times n}. \qquad C_r = CV, \ V \equiv V(p) \in \operatorname{St}(n,r), \ r \ll n.$$

 \rightarrow This gives a set of local basis matrices $\{V_1, V_2, \dots, V_K\}$.

Model order reduction/2

- Given a new parameter value \hat{p} , a basis \widehat{V} can be obtained by interpolating the local basis matrices on a tangent space to St(n, r).
- ▶ For interpolation on $T_{V_3}St(n,r)$, the distance is needed.

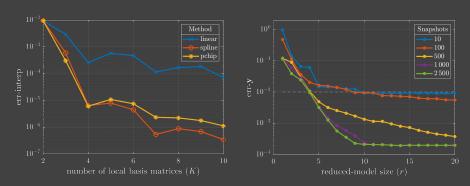


Interpolation in the tangent space to a manifold: [Hüper/Silva Leite 2007, Amsallem 2010, Amsallem/Farhat 2011]

Model order reduction/3

Transient heat equation on a square domain, with 4 disjoint discs.

- ► FEM discretization with n = 1169. Simulation for $t \in [0,500]$, with $\Delta t = 0.1$.
- ▶ 500 snapshot POD over 5000 timeframes, with a reduced model of size r = 4.
- ▶ Relative error between $y(\cdot; \hat{p})$ and $y_r(\cdot; \hat{p})$ is about 1%.



Details for these experiments: [S. 2020]

Riemannian center of mass

Notion of mean on a Riemannian manifold \mathcal{M} , defined by the optimization problem

$$\mu = \underset{p \in \mathcal{M}}{\operatorname{argmin}} \frac{1}{2N} \sum_{i=1}^{N} d^{2}(p, q_{i}),$$

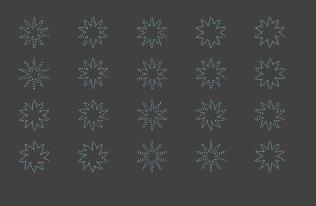
where $d(p,q_i)$ is the Riemannian distance on \mathcal{M} , and $q_i \in \mathcal{M}$, for i = 1,...,N.

▶ For St(n, p), the distances $d(p, q_i)$ are computed with our algorithm.

Riemannian center of mass of a shape set

▶ "device7" shape set from the MPEG-7 dataset.

Riemannian center of mass:

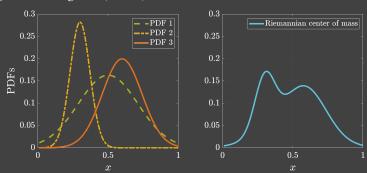


Riemannian center of mass for summary statistics

Summary Statistics: $S^n = \{x \in \mathbb{R}^{n+1} : ||x|| = 1\}$ can be used to approximate S^∞ , the space of univariate probability density functions (PDFs) on the unit interval [0,1], i.e.,

$$\mathcal{P} = \left\{ g : [0,1] \to \mathbb{R}_{\geq 0} : \int_0^1 g(x) \, \mathrm{d}x = 1 \right\}.$$

Example: Riemannian center of mass of 3 PDFs, sampled at 100 points, thus making them belong to $St(100,1) \equiv S^{99}$.

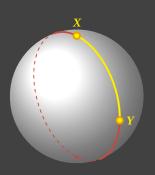


Functional and shape data analysis: [Srivastava/Klassen 2016]

Conclusions

This talk:

- Computing the Riemannian distance can be a hard problem.
- ► Computational framework: shooting method.
- Applications in imaging, model order reduction, and summary statistics.

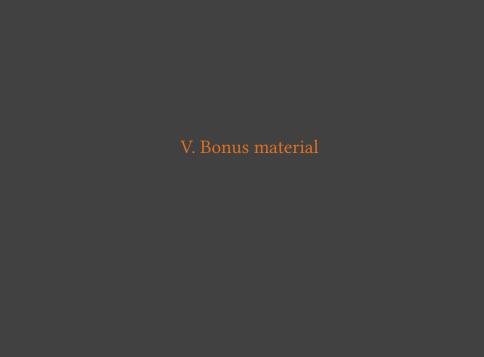


Outlook

- ▶ Recent advances in numerical algorithms: [Zimmermann 2017, Zimmermann/Hüper 2022].
- ▶ Other novel applications on St(n,p) for: EEG data [Yamamoto et al. 2021], brain network harmonics [Chen et al. 2021], clustering problems [Huang et al. 2022], ...

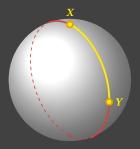
 \sim MATLAB code: github.com/MarcoSutti/LFMS_Stiefel

→ Download slides: marcosutti.net/research.html#talks



Geodesics

- ► Generalization of straight lines to manifolds.
- ▶ Locally curves of shortest length, but globally they may not be.



► Hopf-Rinow theorem guarantees the existence of a length-minimizing geodesic connecting any two given points.

Theorem ([Hopf/Rinow]) Let (\mathcal{M}, g) be a (connected) Riemannian manifold. Then the following conditions are equivalent:

- Closed and bounded subsets of \mathcal{M} are compact;
- (\mathcal{M}, g) is a complete metric space;
 - 3. (\mathcal{M}, g) is geodesically complete, i.e., for any $x \in \mathcal{M}$, the exponential map Exp_x is defined on the entire tangent space $T_x \mathcal{M}$.

Any of the above implies that given any two points $x, y \in \mathcal{M}$, there exists a length-minimizing geodesic connecting these two points.

The Stiefel manifold is compact/complete/geodesically complete.

→ Length-minimizing geodesics exist.

Riemannian Geometry, Sakai 1992

The orthogonal group as a special case of St(n, p)

▶ If p = n, then the Stiefel manifold reduces to the orthogonal group

$$O(n) = \{ X \in \mathbb{R}^{n \times n} \colon X^{\top} X = I_n \},$$

and the tangent space at *X* is given by

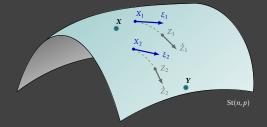
$$T_X O(n) = \{ X\Omega : \Omega^{\perp} = -\Omega \} = X S_{\text{skew}}(n).$$

- ▶ Furthermore, if $X = I_n$, we have $T_{I_n}O(n) = S_{\text{skew}}(n)$. This means that the tangent space to O(n) at the identity matrix I_n is the set of skew-symmetric n-by-n matrices $S_{\text{skew}}(n)$.
- ▶ In the language of Lie groups, we say that $S_{\text{skew}}(n)$ is the Lie algebra of the Lie group O(n).

Geodesics via multiple shooting

Global problem (*X* and *Y* "far")

- Based on subdivision.
- Enforce continuity conditions of Z and \dot{Z} at the interfaces between subintervals.



 X_k : point on St(n, p) relative to the k-th subinterval.

 ξ_k : tangent vector to St(n, p) at X_k .

Geodesics via multiple shooting

System of nonlinear equations:

$$F(\Sigma) = \begin{bmatrix} Z_1^{(1)} - \Sigma_1^{(2)} \\ Z_2^{(1)} - \Sigma_2^{(2)} \\ Z_2^{(2)} - \Sigma_1^{(3)} \\ Z_2^{(2)} - \Sigma_2^{(3)} \\ \vdots \\ r_1 = \Sigma_1^{(1)} - Y_0 \\ r_2 = \Sigma_1^{(m)} - Y_1 \end{bmatrix} = 0, \quad \underset{\text{linearize}}{\text{linearize}} \underbrace{\begin{bmatrix} G^{(1)} & -I & O & & O \\ O & G^{(2)} & -I & \ddots & & O \\ & \ddots & \ddots & \ddots & \ddots & O \\ O & & \ddots & G^{(m-1)} & -I \\ C & O & & O & D \end{bmatrix}}_{=:DF(\Sigma)} \delta\Sigma = -F(\Sigma).$$

- + Fast convergence to ξ .
- lacksquare A very good initial guess $\xi^{(0)}$ is still needed.